Pre-Calculus 12 Pascal's Triangle

Pascal's Triangle

Row 1
Row 2
Row 3
Row 4
Row 5

binomial expansions:

 $(x + y)^0 =$ $(x + y)^1 =$

 $(x + y)^2 =$

 $(x + y)^3 =$

 $(x + y)^4 =$

Patterns

The number of terms is always _______.
The first term is _______, and the last term is _______.
The exponent of the first term begins with _____ and ______ by one for each term.
The exponent of the second term begins with _____ and ______ by one for each term.
The sum of the exponents in each term is equal to _______ (the _______ of the binomial).
The corresponding terms from either end have equal _______ (except the middle term if there is an odd number of terms in the expansion).

Finding the Coefficients

Pascal's Triangle

n	$(x+y)^n$	Coefficients
0	$(x + y)^{0}$	
1	$(x + y)^1$	
2	$(x + y)^2$	
3	$(x + y)^3$	
4	$(x + y)^4$	
5	$(x + y)^5$	
6	$(x + y)^{6}$	
7	$(x + y)^7$	

Ex. 1) Expand, using Pascal's Triangle a.) $(x + y)^7$

Lesson 6

b.) $(3x - 1)^4$