Pre-Calculus 12 Pascal's Triangle

Pascal's Triangle
Row 1

Row 2

Row 3

Row 4

Row 5
binomial expansions:

$$
(x+y)^{0}=
$$

$$
(x+y)^{1}=
$$

$$
(x+y)^{2}=
$$

$$
(x+y)^{3}=
$$

$$
(x+y)^{4}=
$$

Patterns

The number of terms is always \qquad

The first term is \qquad and the last term is \qquad _.

The exponent of the first term begins with \qquad and \qquad by one for each term.

The exponent of the second term begins with \qquad and \qquad by one for each term.

The sum of the exponents in each term is equal to \qquad (the \qquad of the binomial).

The corresponding terms from either end have equal \qquad (except the middle term if there is an odd number of terms in the expansion).

Finding the Coefficients
Pascal's Triangle

\mathbf{n}	$(\boldsymbol{x}+\boldsymbol{y})^{\boldsymbol{n}}$	
0	$(x+y)^{0}$	
1	$(x+y)^{1}$	
2	$(x+y)^{2}$	
3	$(x+y)^{3}$	
4	$(x+y)^{4}$	
5	$(x+y)^{5}$	
6	$(x+y)^{6}$	
7	$(x+y)^{7}$	

Ex. 1) Expand, using Pascal's Triangle
a.) $(x+y)^{7}$
b.) $(3 x-1)^{4}$

