Pre-Calculus 11 Multiplying Rational Expressions

Rational expressions can be multiplied in a similar way that rational numbers are multiplied.
Review: $\frac{1}{3} \times \frac{1}{\frac{1}{2}}=\frac{1}{10}$ Use division to simplify first

Steps for Multiplying:

- Factor all expressions GCF, difference of squares, PSF
- State restrictions (what will make denominator equal to 0) (from original expression)
- Divide out any like factors (Divide the numerators and denominators by their common factors)
- Multiply numerators, multiply denominators
- State final answer with restrictions

When asked to simplify an expression, don't forget to state the non-permissible values.
Practice: Simplify each expression
a) $\frac{-4 x}{3} \cdot \frac{2 y}{5}$
\longleftarrow no restrictions,
b) $\frac{x^{3}}{\frac{10}{2} \cdot \frac{3}{y}}$

$$
\frac{-8 x y}{15} \quad \text { no veriable in }
$$

$$
\begin{array}{ll}
x & y
\end{array} \quad y \neq 0
$$

$$
\frac{3 x^{3}}{2 y}
$$

Multiplication

Examples: Simplify each expression and state restrictions.

1. $\frac{3 b^{2}}{5 a} \times \frac{2 d}{\sum_{3}}$

$$
a \neq 0
$$

$$
\frac{2 b^{2}}{15}
$$

2. $\frac{2 f^{\prime}(x+2)}{3 x} \times \frac{5(x-4)}{8 x(x+2)}$

$$
\begin{aligned}
& \text { * Never divide/cancel } \\
& \text { through a +/- sign } \\
& \text { ie } \frac{(x-4)}{(x+2)} \text { does not } \\
& \text { simph-fy! }
\end{aligned}
$$

3. $\frac{x^{2}+x-6}{x^{2}+2 x-15} \cdot \frac{x-3}{x-2}=$

$$
\begin{aligned}
& \frac{(x+3)(x-2)}{(x+5)(x-3)} \cdot \frac{(x-3)}{(x-3)} \\
& \frac{x+3}{x+5}
\end{aligned}
$$

4. $\frac{x^{2}-x-20}{x^{2}-6 x} \cdot \frac{x^{2}-12 x+36}{x^{2}+9 x+20}=$

$$
\begin{aligned}
& \frac{(x-5)(x+4)}{x(x-6)} \cdot \frac{(x-6)\{x-6)}{(x+4)(x+5)} \\
& \quad \frac{(x-5)(x-6)}{x(x+5)}
\end{aligned}
$$

5. $\frac{4-x^{2}}{5 x-10} \cdot \frac{x-5}{3 x-15}=$
$\frac{(2-x)(2+x)}{5(x-2)} \cdot \frac{(x-5)}{3(x-5)}$
$-\frac{(x-2)(2+x)}{5(x-2)} \cdot \frac{(x-5)}{3(x-5)}$

$$
x \neq 2,5
$$

$$
-\frac{(2+x)}{15}
$$

6. $\frac{3 x^{2}-5 x-2}{6 x} \cdot \frac{4 x^{2}-8 x}{x^{2}-4 x+4}=$

$$
\begin{gathered}
\begin{array}{c}
p-6 \\
F-\frac{L}{3}, \frac{1}{1}
\end{array} \frac{(3 x+1)(x-2)}{3} \cdot \frac{2 x(x-2)}{(x-2)(x-2)} \quad x \neq 0,2 \\
\frac{2(3 x+1)}{3}
\end{gathered}
$$

