Pre-Calculus 12 Logs with Special Bases

The most important base number for exponential functions is the number denoted by eLike π , e (Euler's number) is an irrational number whose value is 2.718281828347045...

Evaluating Logarithms

Base 10

- $y = \log_{10} x$ is called a common logarithmic function
- also written as $y = \log x$

Base e

- the inverse of the natural exponential function $y = e^x$ is $y = \log_e x$ which is more commonly written as $y = \ln x$
- pronounced "lon" *x*

Ex.1) Use your calculator to evaluate the following logs.

a) log 100	b) $\log \frac{1}{10}$	c) ln 100
	10	

- d) $\ln e^3$ e) $\ln 1$ f) $\ln e^7$
- g) log 0

h) log 1

i) ln *e*

Ex. 2) Use your calculator to evaluate the inverse logarithm (ie. Solve for *x*)

a)
$$\log x = 5$$
 b) $ln_e x = -0.3$

*The calculator is only useful for base 10 and base e (special bases). For non-special bases we use exponential form or change of base formula.

Change of Base Theorem $log_b n = \frac{log_a n}{log_a b} \quad where \ a, b \ and \ n > 0, a \neq 1, b \neq 1$

Ex. 3) Evaluate the following

a)
$$y = \log_2 3$$

b) $y = \log_7 \pi$

Graphing $y = e^x$ and $y = \ln x$

Ex.	1)	Sketch	y	=	e^x
			~		

Ex. 2) Sketch $y = \ln x$

> The inverse of $y = e^x$ is $y = \log_e x$

> More commonly written as $y = \ln x$

Assignment: Graph: $y = -e^{-x+1}$, $y = \ln(-x) + 1$, $y = 2e^{(x-1)}$, $y = -\ln(-x+2)$ Change of Base worksheet (odds)