Pre-Calculus 12 Logs with Special Bases

The most important base number for exponential functions is the number denoted by e Like π , e (euler's number) is an irrational number whose value is 2.718281828347045...

Evaluating Logarithms

Base 10

• $y = \log_{10} x$ is called a common logarithmic function

• also written as $y = \log x$

Lace 10 is implied

Base e

• the inverse of the natural exponential function $y = e^x$ is $y = \log_e x$ which is more commonly written as $y = \ln x$

Ex.1) Use your calculator to find the following logs.

Ex. 2) Use your calculator to find the inverse logarithm (ie. Solve for x)

a)
$$\log x = 5$$
 10⁵ = X b) $\ln_e x = -0.3$ m calc 2^{nd} $\ln_e (-0.3)$

Logs with Special Bases and Graphing y=e^x.notebook

*The calculator is only useful for base 10 and base e (special bases). For non-special bases we use exponential form or change of base formula.

Change of Base Theorem

 $log_b n = \frac{log_a n}{log_a b}$ where a, b and n > 0, $a \ne 1$, $b \ne 1$

*allows you to
change to base
of 10 or e
so you can use
the calc.

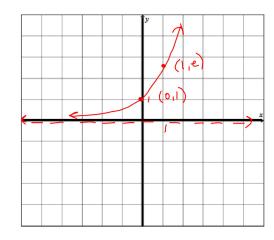
Ex. 3) Evaluate the following

a)
$$y = \log_2 3$$

$$log_2 3 = \frac{log_{10} 3}{log_{10} 2} = \frac{log_3}{log_2}$$
 base 10 so don't have to write 10

b)
$$y = \log_7 \pi$$

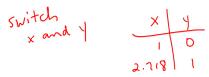
$$log_7 \pi = \frac{log \pi}{log 7}$$
= 0.588

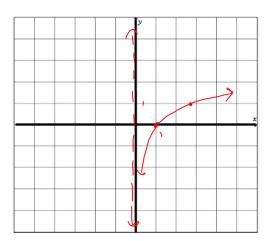

Assignment: Graph: $y = -e^{-x+1}$, $y = \ln(-x) + 1$, $y = 2e^{(x-1)}$, $y = -\ln(-x+2)$ and Change of Base worksheet (odds)

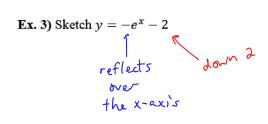
Graphing $y = e^x$ and $y = \ln x$

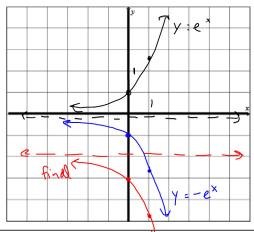
Ex. 1) Sketch
$$y = e^x$$

e= 2.718






Ex. 2) Sketch
$$y = \ln x$$


ightharpoonup The inverse of $y = e^x$ is $y = \log_e x$

ightharpoonup More commonly written as $y = \ln x$

Assignment: Pg=381, #4b,d, 5b, 6aiii, 9, M.C. #1, 9 Graph: $y = -e^{-x+1}$, $y = \ln(-x) + 1$, $y = 2e^{(x-1)}$, $y = -\ln(-x+2)$