## Pre-Calculus 12 Logs with Special Bases

The most important base number for exponential functions is the number denoted by $e$
Like $\pi, e$ (euler's number) is an irrational number whose value is $2.718281828347045 \ldots$
Evaluating Logarithms

## Base 10

- $y=\log _{10} x$ is called a common logarithmic function
- also written as $y=\log x$
$\widetilde{N}_{\text {base }} 10$ is implied


## Base $e$

- the inverse of the natural exponential function $y=e^{x}$ is $y=\log _{e} x$ which is more commonly written as $y=\ln x$
* pronounced "lon"x

Ex.1) Use your calculator to find the following logs.


Ex. 2) Use your calculator to find the inverse logarithm (ie. Solve for $x$ )
a) $\log x=5$
$10^{5}=x$
b) $\ln _{e} x=-0.3$
$\frac{m \text { calc }}{2^{n d}} \log (5)$
100000
$\frac{\text { oncalc }}{2^{\text {nd }}} \ln (-0.3)$
0.741
*The calculator is only useful for base 10 and base $e$ (special bases). For non-special bases we use exponential form or change of base formula.

## Change of Base Theorem

$$
\log _{b} n=\frac{\log _{a} n}{\log _{a} b} \quad \text { where } a, b \text { and } n>0, a \neq 1, b \neq 1
$$

$$
\begin{aligned}
& \text { * allows you to } \\
& \text { change to base } \\
& \text { of } 10 \text { or e } \\
& \text { so you can use } \\
& \text { the calc. }
\end{aligned}
$$

a) $y=\log _{2} 3$

$$
\begin{aligned}
\log _{2} 3 & =\frac{\log _{10} 3}{\log _{10} 2}=\frac{\log 3}{\log 2} \quad \begin{aligned}
\text { base } 10 \text { so } \\
\text { don hare to write } 10
\end{aligned} \\
& =1.585
\end{aligned}
$$

b) $y=\log _{7} \pi$

$$
\begin{aligned}
\log _{7} \pi & =\frac{\log \pi}{\log 7} \\
& =0.588
\end{aligned}
$$

```
Assignment: Graph: }y=-\mp@subsup{e}{}{-x+1},y=\operatorname{ln}(-x)+1,y=2\mp@subsup{e}{}{(x-1)},y=-\operatorname{ln}(-x+2
    and Change of Base worksheet (odds)
```


## Graphing $y=e^{x}$ and $y=\ln x$

Ex. 1) Sketch $y=e^{x}$
$e=2.718$



Ex. 2) Sketch $y=\ln x$

$$
x=e^{y}
$$

$>$ The inverse of $y=e^{x}$ is $y=\log _{e} x$
$>$ More commonly written as $y=\ln x$


Ex. 3) Sketch $y=-e^{x}-2$

$$
\begin{aligned}
& \text { reflects down } 2 \\
& \text { over } \\
& \text { thex-axis }
\end{aligned}
$$



Assignment:
Graph: $y=-e^{-x+1}, \quad y=\ln (-x)+1, \quad y=2 e^{(x-1)}, \quad y=-\ln (-x+2)$

