Assignment: Logarithmic Applications

For each of the following use the formula: $A=P e^{r t}$

$$
\begin{aligned}
& A=\text { Amount at time } t \\
& P=\text { Original (initial amount) } \\
& r=\text { Growth rate } \\
& t=\text { time }
\end{aligned}
$$

1. A radioactive substance is decaying. If the initial amount is 10 grams and 6 grams remain after 5 years, then:
a) Determine the rate of decay
b) Determine the amount after 10 years
2. It is estimated that 20% of a certain radioactive substance decays in 30 hours.
a) Determine the rate of decay
b) What is the half-life of this substance?
3. A biologist studying a colony of bacteria determines that a certain culture grows exponentially such that the bacteria doubles every 4 days.
a) Determine the rate of growth.
b) If initially the biologist has 1200 bacteria present, how many days does it take before 100000 bacteria are present?
4. The half-life of a radioactive carbon 14 is 5570 years. If 500 milligrams are present today, determine the amount present after 2500 years.
5. A radioactive substance decays from 100 units to 40 units in 25 hours. What is the half-life of this substance?
6. Suppose you were able to invest $\$ 1250$ in an account where interest was compounded continuously at a rate of 3%. Find the amount after 4 years.

For each of the following use the formula: $M=\log \left(\frac{A}{A_{0}}\right)$

$$
\begin{aligned}
& M=\text { Magnitude of earthquake } \\
& A=\text { Intensity of vibrations } \\
& A_{0}=\text { Intensity of a standard earthquake }
\end{aligned}
$$

7. An earthquake in Vancouver had a magnitude of 6.3 on the Richter scale. An earthquake in Japan had a magnitude of 8.9 on the Richter scale.

How many times more intense was the Japan earthquake than the Vancouver earthquake?
8. A small tremor of magnitude 2.3 is then followed by a stronger one of magnitude 5.3. How much stronger is the second tremor that the first?

For each of the following use the formula: $P H=-L O G\left[H^{+}\right]$

$$
\begin{aligned}
& \text { PH }=\text { Acid Strength (Power of Hydrogen) } \\
& \mathrm{H}^{+}=\text {Concentration of hydrogen ion }
\end{aligned}
$$

9. A beaker of acid has a hydrogen concentration of $3.5 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$. Calculate the pH of the acid.
10.If a beaker of acids has a pH of 4.1, calculate the hydrogen concentration of the acid.
10. A beaker of acid has a pH of 4.9, and a second beaker has a pH of 7.6 . Determine how many times higher the hydrogen concentration is in the strong acid as compared to the weaker one.

For each of the following use the
formula: $A=P\left(1+\frac{r}{n}\right)^{n t}$

$$
\begin{aligned}
& A=\text { Compound amount (new investment value } \\
& P=\text { Original amount } \\
& r=\text { interest rate }(\text { as a decimal) } \\
& n=\# \text { of Compounding periods } \\
& t=\text { time }
\end{aligned}
$$

12. Find the new investment of:
a) $\$ 2000$ at 8% compounded annually over 15 years
b) $\$ 5000$ at 12% compounded monthly over 4 years
c) $\$ 15000$ at 6% compounded semi-annually over 7 years
13. You plan to buy a car and have saved $\$ 5000$. The car you want costs $\$ 5900$. How long will you have to invest your money if you can invest at 6.12\% compounded quarterly?
14.The Robinsons plan to invest money for their newborn son so that he has $\$ 30000$ available for university on his $18^{\text {th }}$ birthday. Assuming a growth rate of 7% compounded semi-annually, how much will the Robinson's need to invest today?
14. The amount of a chemical in grams that will dissolve in a solution is given by $C=8 e^{0.3 t}$ where t is the temperature in Celsius of the solution. Find t when $C=100$ grams.
15. Determine how many monthly investments of $\$ 50$ would have to be deposited into a savings account that pays 3\% annual interest, compounded monthly, for the account's future value to be \$50 000.

$$
\begin{array}{ll}
F V=\frac{R\left[(1+i)^{n}-1\right]}{i} & \mathrm{FV}=\text { Present Value } \\
& \mathrm{R}=\text { investment payment } \\
\mathrm{i}=\frac{\text { annual interest } \text { rate }}{\# \text { of compounding periods per year }} \\
& \mathrm{n}=\# \text { of investments }
\end{array}
$$

17.A person borrows $\$ 15000$ to buy a car. The person can afford to pay $\$ 300$ a month. The loan will be repaid with equal monthly payments at 6% annual interest, compounded monthly. How many monthly payments will the person make?

$$
P V=\frac{R\left[1-(1+i)^{-n}\right]}{i} \quad \begin{array}{ll}
\mathrm{PV}=\text { Present Value } \\
\mathrm{R}=\text { payment } \\
\mathrm{i}=\frac{\text { annual interest rate }}{\text { \#of compounding periods per year }} \\
\mathrm{n}=\# \text { of payments }
\end{array}
$$

Answers

1. a) -0.1022
b) 3.6 g
2. a) $-0.0074 \quad$ b) 93.2 hours
3. a) 0.1733
b) 26 days
4. $r=-0.000124, A=366.3 \mathrm{mg}$
5. $r=-0.03665, t=18.9$ hours
6. $\$ 1409.37$
7. Vancouver - $10^{6.3}$, Japan - $10^{8.9}$, Japan is 398.1 times as intense
8. Strong - $10^{5.3}$, Small $-10^{2.3}$, Strong tremor is 1000 times as intense
9. 5.46
10. $7.94 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
11. 501
$\begin{array}{lll}\text { 12. a) } \$ 6344.34 & \text { b) } \$ 8061.13 & \text { c) } \$ 22688.85\end{array}$
12. 2.7 years
13. $\$ 8694.98$
14. $8.42^{\circ} \mathrm{C}$
15. 502 monthly payments
16. 58 payments
