## Linear Systems

Key Ideas:

1. Types of Systems

- independent (different slopes, one solution - a point)
- inconsistent (same slope, different y-intercept - no solution)
- dependent (same slope and $y$-intercept - infinite solutions)

2. Solving Systems

- graphing
- substitution strategy (isolate a variable)
- elimination strategy (cancel out one of the variables)

3. Word Problems

- write 2 equations (system) and solve
*Note: Watch your positive and negative signs!!

1. State the type of system:
a) $x+y=3$
$-2 x-y=2$
b) $3 x+y=9$
$6 x+2 y=12$
2. Determine whether the point is a solution to the system.
a) $-3 x+2 y=8 ;(-4,-2)$
b) $x-2 y=4 ;(-2,1)$
$3 x+y=5$
3. Solve by graphing. What type of system is it?
$x-y=3$
$4 x+5 y=30$

4. Solve by graphing. What type of system is it?
$2 y+x-4=0$
$2 y=-x+4$

5. Solve by substitution:

$$
\begin{aligned}
& 2 x+3 y=11 \\
& 4 x-y=-13
\end{aligned}
$$

6. Solve by substitution:
$-7 x-2 y=-13$
$x-2 y=11$
7. Solve by elimination:
$5 x+4 y=-30$
$3 x-9 y=-18$
8. Solve by elimination:

$$
\begin{aligned}
& 2 x+3 y=6 \\
& 5 x+10 y=20
\end{aligned}
$$

9. Edward has a jar containing nickels and dimes. The total number of coins is 300 , and their value is $\$ 23.25$. How many of each coin is in the jar?
10. Castel and Gabriella are selling pies for a school fundraiser. Customers can buy apple pies and lemon meringue pies. Castel sold 6 apple pies and 4 lemon meringue pies for a total of $\$ 80$. Gabriella sold 6 apple pies and 5 lemon meringue pies for a total of $\$ 94$. What is the cost each of one apple pie and one lemon meringue pie?
