Linear Functions

Key Ideas:

- 1. Slopes
 - Label your points $(x_1, y_1), (x_2, y_2)$
 - $m = \frac{rise}{run'}$ (build a triangle)
 - Slope Formula
 - Rate of Change
 - Parallel (same), Perpendicular (negative reciprocals "flip and switch")
- 2. Graphing Linear Functions
 - Slope-Intercept Form (y = mx + b)
 - Point-Slope Form $(y y_1 = m(x x_1))$
 - Graph using Intercepts
- 3. Forms of the Equation
 - Slope-Intercept form (y = mx + b)
 - Slope-Point form $(y y_1 = m(x x_1))$
 - General form (no fractions or decimals, and x is always positive), (Ax + By + C = 0)
- 4. Writing Equations
 - Find the slope
 - i. Use the slope formula
 - ii. Re-write the equation in slope-intercept form
 - Find a point
 - Substitute the slope and point into point-slope formula
 - Re-write point-slope formula into general form or slope-intercept form if needed
- 5. Distance and Midpoint
 - Label your points $(x_1, y_1), (x_2, y_2)$
 - Use "Frank" to find the formulas
 - Make sure the answer for the midpoint is written as a coordinate
- *Note: Substitute into formulas carefully! Watch your positive and negative signs!!

Slope of a Line

1. Determine the slope of the line using Rise over Run (Build the triangle).

2. Determine the slope of a line through the following points.

a) (3,-7), (-5,-10) b) (-3,8), (-1,3)

3. Determine the value of "x'' if the slope running through the points (0, -2) and (x, 4) has a value of 2.

4. Determine the value of "y" if the slope running through the points (6, y) and (1,-5) is $-\frac{2}{3}$.

- 5. The coordinates of two points on two different lines are given. Are the two lines parallel, perpendicular, or neither? Justify your choice.
 - a) W(-3,5), X(8,3) and C(6,6), D(1,8)

b) J(3,-4), K(9,2) and P(5,-4), Q(2,-1)

c) R(-3,2), S(1,-6) and E(-2,1), F(-5,7)

6. Determine the slope of a line *parallel and perpendicular* to: 3x - 5y + 10 = 0.

7. A line through the points (5, y) and (-6, -3) is perpendicular to a line with a slope of $\frac{1}{4}$. Determine the value of "y".

8. A line through the points (-4, 1) and (x, -2) is parallel to the line 5x - 3y + 10 = 0. Determine the value of "x".

- 9. The following represents the graph for a helium balloon's flight.
 - a) Determine the rate of change of the graph.
 - b) What does this slope (rate of change) mean?
 - c) When is the balloon at 5 000 ft?
 - d) How high is the balloon off the ground at 2 minutes?

- 10. The following graph represents the relationship between the number of seconds it takes to hear the thunder after a lightning strike and the distance you are from the lightning.
 - a) Determine the rate of change for the graph.
- Distance from Lightning Strike

- b) What does this rate of change mean?
- c) Determine the number of miles you are from a lightning strike if the time between the strike and thunder was 15 seconds.

Graphing Linear Functions

11. Graph the following using the Slope-Intercept method for graphing.

a)
$$-x + 2y = 4$$

12. Graph the following using the Point-Slope method for graphing.

c)
$$y - 4 = 3(x + 1)$$

13. Graph the following by finding the intercepts of the graph.

Writing Equations of Linear Functions

14. Write each equation in general form.

a)
$$y = \frac{5}{4}x - \frac{3}{5}$$
 b) $y + 4 = \frac{2}{3}(x - 1)$

15.a) Write an equation in slope-point form for this line.

b) Write the equation in part a) in slope-intercept form. What is the y-intercept of this line?

16. Write an equation for a line in **general form** having: **slope** of $\frac{-3}{5}$, **y-intercept** of -8.

17. Write an equation for a line having: **slope** of 4, passing through P(-2, 9).

18. Write an equation for a line in **slope-intercept form**: passing through A(5, -1) and B(-3, 4).

19. Write in **general form**: $y - 2 = \frac{-2}{3}(x + 6)$.

20. Write in *general form*: *parallel* to 5y = 3x - 1, passing through (8, -2).

21. Write in *general form*: *perpendicular* to 3x - 4y = 12, passing through (-4, 3).

Distance and Midpoint

22. Calculate the **distance** from A(6, -4) to B(1, 5):

- 23. Given $\triangle ABC$ with A(0, -2), B(4, 5), and C(-2, 1).
 - a) Classify the triangle as scalene, isosceles or equilateral.

b) Determine the length of median AM, where M is the midpoint of BC.

24. Determine the *midpoint* of A(-5,3) and B(-11,-7).

25. Determine the coordinates of A, given that M(-1,2) is the midpoint of AB and B has coordinates (4,7).

26. The endpoints of the diameter of a circle are (-4, -2) and (6, 4). Determine the coordinates of the centre of the circle.