Lesson 7 Slope-Point Form of a Linear Function

The equation of a line that passes through $P\left(x_{1}, y_{1}\right)$ and has slope m is $y-y_{1}=m\left(x-x_{1}\right)$

In order to find an equation for a line, you must know:

- The slope
- A point on the line

There are three types of questions

1. Given the slope and y-intercept
2. Given the slope and one point (x-int, y-int, coordinate pair)
3. Given two points

There are two methods to use when solving:

1. Slope-Intercept Form $(y=m x+b)$
2. Point-Slope Formula $\left(y-y_{1}=\mathrm{m}\left(x-x_{1}\right)\right)$

Sketch the graph of the linear function with equation:
$y-3=\frac{1}{4}(x+5)$

Type I - Given Slope and y-intercept

Write the equation of a line with a slope of $\frac{2}{3}$ and a y-intercept of -1 .

Type II - Given a Point and the Slope

Example 1

Determine the equation of a line with a slope of 3 that passes through $(1,4)$.

Example 2

Write the equation of a line passing through $(-4,-2)$ with $m=\frac{2}{3}$.

Type III - Given Two Points

Example 3

Determine the equation of the line passing through the points $\mathrm{D}(6,1)$ and $E(-4,-3)$.

Parallel and Perpendicular Lines

- Parallel slopes are equal
- Perpendicular slopes are negative reciprocals

Example 1

Write the equation of a line that passes through $(-2,4)$ and is perpendicular to $2 x-3 y+5=0$.

Example 2

Write the equation of a line with an x-intercept of 2 and parallel to the line $3 x-2 y=6$.

Example 3

Two perpendicular lines intersect on the y-axis. One line has the equation $y-3=\frac{1}{2}(x+4)$. Determine the equation of the other line.

Assignment: Day 1: Pg. 372; 4 (a,c,e), 5(a, c), 6 (a,d), 9, 11(a,b), 14
Day 2: Pg. 372; 20a, 21, 22, 23, 24

