Lesson 8 Application of Logs

I. Growth and Decay

Doubling Period: The time it takes for a population/substance to double in size.
Half-Life: The time it takes for a population/substance to reduce to half its size. (decompose)
$\boldsymbol{\pi}$ - used in formulas to determine area and circumference of a circle
\mathbf{e} - an irrational number (like π) whose value is $2.718 \ldots$ It's a special value used to determine growth of populations; formula for natural growth.

The Law of Natural Growth

This formula is used for continuous growth and decay.
$A=P e^{r t}$
Where:
A is the final amount
P is the original amount
r is the rate of growth
t is the time

Examples

1. A radioactive substance decays at a daily rate of 0.13 . Determine how long it takes for this substance to decompose to half its size.
2. There are 500 gophers in a field on May $31^{\text {st }}$. If on June $20^{\text {th }}$ there are 800 ,
a) determine the rate of growth.
b) determine how many gophers are there on June $28^{\text {th }}$.
3. Lead-210 is a radioactive nuclide. If 8 g of it decays to 6.75 g in 5 years, determine the half-life of lead-210.

II. Earthquakes

The most intense earthquake ever recorded was in Chile in May 1960, with a magnitude of 9.5.

$$
M=\log \frac{I}{S}
$$

Where: $\quad \mathrm{M}$ is the magnitude
I is the intensity of the ground motion
S is the intensity of a standard earthquake
a) Calculate the intensity of the earthquake in Chile in terms of a standard earthquake.
b) An earthquake that occurred in Haiti was 10^{7} times as intense as a standard earthquake. How many times as intense as the Haiti earthquake was the Chile earthquake? State your answer to the nearest whole number.

