

b) Determine the general solution for the above equation.

X=90° ± 360° K, KEZ

2

.

Ex. 6) Solve
$$\tan^2\theta - 5\tan\theta + 4 = 0$$
 for $\theta \in \mathbb{R}$ is radiums given 1 solve
 PSF $(\tan \theta - 4)(\tan \theta - 1) = 0$
 $f + \frac{1}{5 - 5}$ $\tan \theta - 4 = 0$ $(\tan \theta - 1) = 0$
 $F - 4, -1$ $\tan \theta = 4$
 $\theta r : \tan^{-1}(4)$
 $\theta r : 1.3258(...)$
 $\tan \theta > 0$
in at. π
 $\theta : 1.326$
 $a \pi + 1.3258(...)$
 $f = 4, 467$
 $\Im f$ not factorable,
 $use the guadratic formula$
 $(m your Formula)$
 $(m your Formula)$
 $\theta : 4, 467$
 $\Im f$ $f = 2k\pi f$
 $\theta : 4, 467$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 326 + k\pi, k \in \mathbb{Z}$
 $\theta = 1, 4, 4, 5 + 4, 4, 5 + 4, 4, 4, 5 + 4, 4, 4, 5 + 4, 4, 4, 5 + 4, 4, 4, 5 + 4, 4, 4, 5 + 4, 4, 4, 5 +$

Assignment: Pg. 593; #6b, 7b, 10, 11a, 12a, 13, 14b