Pre-Calculus 12 Solving Trig Equations Algebraically (Substitution and Double Angles)

Ex. 1) Solve: $\sqrt{2} \csc \theta=-5$ for $-180^{\circ} \leq$ © $\leq 180^{\circ}$
Recall:

$$
\begin{array}{ll}
\csc \theta=\frac{-5}{\sqrt{2}} & \text { degrees } \\
\sin \theta & =-\frac{\sqrt{2}}{5} \\
\theta r: \sin ^{-1}\left(\frac{\sqrt{2}}{5}\right) \\
\theta_{r} & =16.4299 \ldots \quad \text { not ain }
\end{array}
$$

$Q_{\text {Isolate }} \csc \theta$
Make the reciprocal
(3) Find or
$\sin \theta<0$
in Q III, VI
(4) Find values
in
Q IV
Quadrants

$$
\begin{aligned}
& \csc \theta=\frac{1}{\sin \theta} \\
& \sec \theta=\frac{1}{\cos \theta} \\
& \cot \theta=\frac{1}{\tan \theta}
\end{aligned}
$$

$$
\text { XIII: } \theta=180^{\circ}+16.4299 \ldots
$$

$$
\begin{aligned}
\theta & =360^{\circ}-16.4299 \text { not inter v } \\
& =343.570^{\circ}
\end{aligned}
$$

(5) find coterminal angles
where $\sin 0<0$

$$
\begin{aligned}
\theta_{c} & =196.430^{\circ}-360^{\circ} \\
& =-163.570^{\circ} \\
\theta_{c} & =343.57^{\circ}-360^{\circ} \\
& =-16.430^{\circ}
\end{aligned}
$$

Ex. 2) Solve: $2 \cos ^{2} \theta-3 \sin \theta=0 \quad$ for $\quad 0 \leq \theta \leq 2 \pi$
Ex. 2) Solve: $2 \cos ^{2} \theta-3 \sin \theta=0$ for 0
(1) Use substitution to change
(3) Factor

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

identity

No solon

$$
\begin{aligned}
& 2\left(1-\sin ^{2} \theta\right)-3 \sin \theta=0 \\
& 2-2 \sin ^{2} \theta-3 \sin \theta=0 \\
& 0=2 \sin ^{2} \theta+3 \sin \theta-2 \\
& p-t \quad 0:(2 \sin \theta-1)(\sin \theta+2) \\
& 53 \\
& \text { F } \frac{4}{2},-\frac{1}{1} \\
& \theta=\frac{\pi}{6}, \frac{5 \pi}{6} \\
& p-t \quad 0:(2 \sin \theta-1)(\sin \theta+2) \\
& \begin{array}{lll}
5 & \frac{4}{2} & -\frac{1}{1}
\end{array} \\
& \sin \theta=\frac{1}{2} \\
& \sin \theta=\underbrace{-2}_{r e j}
\end{aligned}
$$

Ex. 3) Solve for $\theta: 4 \sin ^{2} \theta-7 \cos \theta-2=0 \quad$ for $\quad 0 \leq \theta \leq 2 \pi$

$$
\begin{aligned}
& 4\left(1-\cos ^{2} \theta\right)-7 \cos \theta-2=0 \\
& 4-4 \cos ^{2} \theta-7 \cos \theta-2=0 \\
& 0=4 \cos ^{2} \theta+7 \cos \theta-2 \\
& p-8 \quad 0=(4 \cos \theta-1)(\cos \theta+2) \\
& \begin{array}{ll}
S 7 & \cos \theta=\frac{1}{4} \\
\delta_{1}^{-1} & \cos \theta=-2 \\
\text { no sot } &
\end{array} \\
& F \frac{81}{4}-\frac{1}{1} \\
& \theta_{r}=\cos ^{-1}\left(\frac{1}{4}\right) \\
& \cos \theta>0 \quad \theta_{r}=1.31812 \ldots \\
& Q I \text { in } \quad Q I \quad \theta=1.318 \\
& \text { xIV } \theta=2 \pi-1.31812 \ldots \\
& =4.965
\end{aligned}
$$

Double Angles

Ex. 4) Solve $\underline{\underline{\cos (2 \theta)}}=1$ for $0 \leq \theta \leq 2 \pi$

$$
\begin{aligned}
\begin{aligned}
\text { Replace } \\
\text { cos } 2 \theta \\
\text { with } \\
\text { dowbleangle } \\
\text { identity }
\end{aligned} & \begin{array}{rl}
1-2 \sin ^{2} \theta & =1 \\
0 & 0
\end{array} \\
& 0 \sin ^{2} \theta \\
0 & =\sin \theta \\
\theta & =0, \pi, 2 \pi
\end{aligned}
$$

Solving Trig Eqns Algebraically again.notebook

Ex. 5) Solve $2 \sin ^{2} x=\cos 2 x$ for $\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}$

$$
\cos 2 x=1-2 \sin ^{2} x
$$

Use
substitution
replace double

Combine like terms

Isolate $\sin ^{2} x$

$$
\begin{aligned}
& \sin ^{2} x=\frac{1}{4} \\
& \sin x= \pm \frac{1}{2}
\end{aligned}
$$

$$
\overbrace{\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}} .
$$

Quads II : III

$$
\int_{\frac{\pi}{\text { III }}}^{\frac{\pi}{2}} \int_{\frac{\pi \pi}{2}}^{I}
$$

worksheet

$$
\begin{aligned}
& \# 1,2,3 c \\
& 5,6 a-c
\end{aligned}
$$

Assignment: Handout "Trig Equations Worksheet" \#ac, 2c, 3b, c, Aa, 5a,c,e, bb

