Pre-Calculus 12 Sum and Difference Identities...again

Ex. 1) If $\sin \alpha=\frac{3}{5}$ with α in QII and $\cos \beta=\frac{5}{13}$ with $\tan \beta>0$ find the exact value of:

$$
\text { a) } \begin{aligned}
\sin (\alpha+\beta) \\
\begin{aligned}
\sin (\alpha+\beta) & =\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
& =\frac{\frac{3}{5}\left(\frac{5}{13}\right)+\left(-\frac{4}{5}\right)\left(\frac{12}{13}\right)}{} \\
\begin{aligned}
\text { given } \\
\text { these } \\
\text { valuer }
\end{aligned} & =\frac{15}{65}-\frac{48}{65} \\
\sin (\alpha+\beta) & =-\frac{33}{65}
\end{aligned}
\end{aligned}
$$

b) $\cos (\alpha+\beta)$

$$
\begin{aligned}
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& =\left(-\frac{4}{5}\right)\left(\frac{5}{13}\right)-\left(\frac{3}{5}\right)\left(\frac{12}{13}\right) \\
& =-\frac{20}{65}-\frac{36}{65} \\
\cos (\alpha+\beta) & =-\frac{56}{65}
\end{aligned}
$$

c) $\tan (\alpha+\beta)$

$$
\begin{aligned}
\tan (\alpha+\beta) & =\frac{\sin (\alpha+\beta)}{\cos (\alpha+\beta)} \\
& =\frac{\frac{-33}{65}}{\frac{-56}{55}} \\
\tan (\alpha+\beta) & =\frac{33}{56}
\end{aligned}
$$

d) The coordinates of $\mathrm{P}(\alpha+\beta)$

$$
\begin{aligned}
p(\alpha+\beta)= & (\cos (\alpha+\beta), \sin (\alpha+\beta)) \\
& \left(-\frac{56}{65},-\frac{33}{65}\right)
\end{aligned}
$$

```
Ex. 2) Expand \(\cos \left(\frac{\pi}{2}+\frac{\pi}{2}\right)\) to verify that \(\cos \pi=-1\).
    \(\pi=\frac{\pi}{2}+\frac{\pi}{2}\)
    \(\cos \left(\frac{\pi}{2}+\frac{\pi}{2}\right)=\cos \frac{\pi}{2} \cos \frac{\pi}{2}-\sin \frac{\pi}{2} \sin \frac{\pi}{2}\)
        \(\cos \pi \quad=-1\)
```

Ex. 3) Prove $\sin (\pi-x)=\sin x$

Ex. 4) Prove $\sin (A+B)+\sin (A-B)=2 \sin A \cos B$

[^0]
[^0]: Assignment: $\mathrm{Pg} .306 \not 510,7,10,11 \mathrm{c}, 20$

