Lesson 4 Restrictions on Composite Functions

Examples

1. Given the functions $f(x)=x+1$ and $g(x)=4-x^{2}$,
a) state the domain and range of each function.
b) sketch a graph of $y=f(g(x))$. State the domain and range of the new function.

c) sketch a graph of $y=f(f(x))$. State the domain and range of the new function.

The domain of the composite function, $f(g(x))$, is the set of all values of x in the domain of g such that $g(x)$ is in the domain of f.

Steps for finding the domain of composite functions without sketching a graph

1. Determine the domain of the inside functions. If there are any restrictions, keep them.
2. Determine the domain of the composite function.

- If there are restrictions, add them to the restrictions from step 1.
- If there is an overlap, use the more restrictive domain.

Examples

2. Given $f(x)=\sqrt{x}$ and $g(x)=x^{2}-4$, determine an explicit equation for each of the following and then state the domain of the new function.
a) $g(f(x))$
b) $f(g(x))$
3. Determine possible functions f and g so that $y=f(g(x))$
a) $y=(x-2)^{2}$
b) $y=\sqrt{x+3}$
4. Given $f(x)=\frac{1}{x+3}$ and $g(x)=x^{2}-4 x$, determine an explicit equation for each composite function below and state the domain of the new function.
a) $g(f(x))$
b) $f(g(x))$
