Lesson 4 Logs with Special Bases

The most important base number for exponential functions is the value denoted by e. Like π , e (Euler's number) is an irrational number whose value is 2.718281828347045...

Evaluating Logarithms

- $y = \log_{10} x$ is called a common logarithmic function
- also written as $y = \log x$

Base e

- the inverse of the natural exponential function $y = e^x$ is $y = \log_e x$ which is more commonly written as $y = \ln x$ (natural logarithm)
 - * pronounced "lon" x

Ex.1) Use your calculator to evaluate the following logs.

a) log 100

b) $\log \frac{1}{10}$

c) ln 100

d) $\ln e^3$

e) ln 1

f) $\ln e^7$

g) log 0

h) log 1

i) ln e

Ex. 2) Use your calculator to evaluate the inverse logarithm. (ie. Solve for x)

a)
$$\log x = 5$$

b)
$$ln_e x = -0.3$$

*The calculator is only useful for base 10 and base e (special bases). For non-special bases we use exponential form or change of base formula.

Change of Base Theorem

$$log_b n = \frac{log_a n}{log_a b}$$
 where a, b and $n > 0$, $a \ne 1$, $b \ne 1$

Ex. 3) Evaluate the following.

a)
$$y = \log_2 3$$

b)
$$y = \log_7 \pi$$

Sketching $y = e^x$ and $y = \ln x$

Ex. 1) Sketch the graph of $y = e^x$.

Ex. 2) Sketch the graph of $y = \ln x$.

- ightharpoonup The inverse of $y = e^x$ is $y = \log_e x$
- ightharpoonup More commonly written as $y = \ln x$

Ex. 3) Sketch the graph of $y = -e^x - 2$.

Assignment: Sketch the graph of: 1.) $y = -e^{-x+1}$, 2.) $y = \ln(-x) + 1$, 3.) $y = 2e^{(x-1)}$, 4.) $y = -\ln(-x+2)$