Lesson 3 Surface Areas of Right Pyramids and Right Cones

Recall:

Perimeter of a Square: $\quad P=4 s$
Area of a Square: $\quad A=s^{2}$
Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$

Right Pyramid - are 3-dimensional objects that have triangular faces and a base that is a polygon.

Right Circular Cone - is a 3-dimensional object that has a circular base and a curved surface.

Tetrahedron - a pyramid that has a triangular base.

regular
tetrahedron
Apex - where the triangular faces meet
Height - is the perpendicular distance from the apex to the centre of the base.

Regular Polygon - a polygon that has all sides equal and all angles equal.

Lateral Area - the surface area of an object, not including the base (just the sides)

Slant Height - is the height of a triangular face.

Right Pyramid

If the base is a regular polygon, the triangular faces are congruent.

To determine the surface area of a Right Pyramid, you can add the areas of each side.

Surface Area of a Right Pyramid with a Regular Polygon Base
Surface Area = lateral area + base area
Surface Area $=\frac{1}{2} s($ perimeter of base $)+($ base area $)$
where s is slant height

Example 1

Determine the lateral surface area of this right pyramid, to the nearest square unit.

Example 2

Determine the surface area of a right square pyramid with a base length of 5 cm and a perpendicular height of 12 cm .

Surface Area of a Right Circular Cone

Example 1

A right cone has a base radius of 4 m and a height of 10 m . Determine the surface area of this cone, to the nearest square metre.

Example 2

The lateral area of a cone is $220 \mathrm{~cm}^{2}$. The diameter of the cone is 10 cm . Determine the height of the cone, to the nearest tenth of a centimeter.

