Pre-Calculus 12 Introduction to Logarithms

For the exponential function $y = a^x$ the inverse is $x = a^y$. This inverse is also a function and is called a logarithmic function. It is written as $y = log_a x$ (**Read as**: "y equals the log of x in base a"), where "a" is a positive number other than 1.

Log Form	Exponential Form
$log_a x = y$	$a^{\mathcal{Y}} = x$

Common log – a log with base 10 (our number system is based on powers of 10)

ie) log 25

Ex. 1) Express the following in logarithmic form

a)
$$2^3 = 8$$
 b) $3^{-2} = \frac{1}{9}$

c)
$$y = 4^x$$
 d) $A^2 = C$

Ex. 2) Express the following in exponential form

a)
$$\log_4 16 = 2$$
 b) $\log \frac{1}{1000} = -3$

c)
$$y = \log_{\frac{1}{2}} 4$$
 d) $M = \log_{b} N$

Ex. 3) Evaluate

a)
$$\log_2 16$$
 b) $\log_2\left(\frac{1}{4}\right)$

c) $log_3(\sqrt{3})$ d) $log_3(log_2 8)$

Ex. 4) Solve a.) $\log_8 x = \frac{1}{3}$ b) $\log_8 64 = y$

Ex. 5) Without technology, estimate the value of $log_2 14$ to one decimal place.