Pre-Calculus 12 Introduction to Logarithms

For the exponential function $y=a^{x}$ the inverse is $x=a^{y}$. This inverse is also a function and is called a logarithmic function. It is written as $y=\log _{a} x$ (Read as: " y equals the \log of x in base a "), where " a " is a positive number other than 1 .

Log Form

Exponential Form

$$
\log _{a} x=y
$$

$$
a^{y}=x
$$

Common \log - a log with base 10 (our number system is based on powers of 10)
ie) $\log 25$

Ex. 1) Express the following in logarithmic form
a) $2^{3}=8$
b) $3^{-2}=\frac{1}{9}$
c) $y=4^{x}$
d) $A^{2}=C$

Ex. 2) Express the following in exponential form
a) $\log _{4} 16=2$
b) $\log \frac{1}{1000}=-3$
c) $y=\log _{\frac{1}{2}} 4$
d) $M=\log _{b} N$

Ex. 3) Evaluate
a) $\log _{2} 16$
b) $\log _{2}\left(\frac{1}{4}\right)$
C) $\log _{3}(\sqrt{3})$
d) $\log _{3}\left(\log _{2} 8\right)$

Ex. 4) Solve
a.) $\log _{8} x=\frac{1}{3}$
b) $\log _{8} 64=y$

Ex. 5) Without technology, estimate the value of $\log _{2} 14$ to one decimal place.

