Lesson 3 Composite Functions

Composite functions are functions that are formed from two functions, $f(x)$ and $g(x)$, in which the output of one of the functions is used as the input for the other function.

Notation: $(f \circ g)(x)=f(g(x))$
When combining functions, order is important:

$$
f(g(x)) \text { is not usually the same as } g(f(x))
$$

Examples

1. Given the following, determine

\mathbf{x}	$\mathbf{f (x)}$
-2	8
-1	3
0	0
1	-1
2	0

\mathbf{x}	$\mathbf{g}(\mathbf{x})$
-2	3
-1	2
0	1
1	0
2	-1

a) $f(g(2))$
b) $g(f(2))$
c) $g(g(2))$
2. Given the graphs of $f(x)$ and $g(x)$, determine
a) $f(g(-4))$
b) $f(f(-2))$

3. Given the functions $f(x)=x^{2}+3$ and $g(x)=-2 x+1$, determine
a) $f(g(2))$
b) $g(f(-3))$
c) $g(g(0))$
4. Given $f(x)=2 x^{2}+1$ and $g(x)=2 x+7$, determine an explicit equation for each of the following:
a) $f(g(x))$
b) $g(f(x))$
c) $g(g(x))$
5. Given the graphs of $f(x)$ and $g(x)$, sketch the graph of $h(x)=g(f(x))$.

