Lesson 2 Solving Exponential Equations

Review Exponent Laws

$x^{n} \cdot x^{m}=$
$\left(\frac{x}{y}\right)^{n}=$
$x^{n / m}=$
$\frac{x^{n}}{x^{m}}=\quad\left(x^{n}\right)^{m}=$
$x^{0}=$
$x^{-n}=$

Steps to solve an exponential equation:

1. If the bases are the same (one base on each side) use one-to-one property;
$>$ equate the exponents and solve
If $b^{m}=b^{n}$, then $m=n$
2. If bases are different;
$>$ rewrite with a common base
$>$ equate the exponents and solve

Ex. 1) Solve for x.
a) $2^{5 x-1}=16$
b) $4^{x+2} \cdot 64^{x}=1$
c) $3^{x}(27)=81^{2 x+1}$
d) $2^{3 x} \cdot 4^{x-1}=\left(\frac{1}{8}\right)^{x+2}$
e) $4^{x+1}=2^{x} \sqrt{2}$
f) $\left(\frac{1}{2}\right)^{-x^{2}}=8^{2 x-3}$

To solve for a missing base, raise both sides of the equation to the reciprocal power of the given exponent.

Ex. 2) Solve.

a.) $b^{4}=16$
b.) $b^{\frac{2}{3}}=9$

