L1 Factors and Multiples

W— L1 Factors and Multiples

Lesson 1 Factors and Multiples of Whole Numbers

Definitions:

Factor: a number that divides evenly into another number
ie. factors of 18 are $1,2,3,6,9$, and 18
Multiples: the result of multiplying a number by a whole number (or by skip counting)
ie. some multiples of 6 are $6,12,18,24 \ldots$
Greatest Common Factor (GCF): the largest factor two or more terms have in common
ie. the greatest common factor of 28 and 42 is 14
Prime Factorization: a natural number written as a product of its prime factors ie. the prime factorization of 60 is $2^{2 \cdot 3 \cdot 5}$

Least Common Multiple (LCM): the smallest number that is divisible by two or more numbers
ie. the least common multiple of 5 and 6 is 30

Example 1: Prime Factorization

Determine the prime factorization of 360 .

Try 192

Example 2: Greatest Common Factor (GCF)
Determine the GCF of 600 and 756

$$
\begin{gathered}
\text { GCF } 2 \cdot 2 \cdot 3 \\
12
\end{gathered}
$$

Example 3: Determining the Least Common Multiple
Determine the least common multiple of 600 and 756.

$$
\text { True } 81 \text { and } \frac{d}{54}
$$

Perfect Squares, Cubes, and their Roots
Perfect Square: a number that can be expressed as the product of two equal factors ie. $1,4,9,16,25,36,49,64 \ldots$

Square Root: a number which multiplied by itself produces the original number
Perfect Cube: a number that can be expressed as the product of three equal factors ie. $1,8,27,64,125,216 \ldots$

Cube Root: a number which multiplied by itself three times produces the original number

Example 1: Square Roots
Determine the square root of 3600 .

$$
4=2 \cdot 2
$$

$$
\begin{aligned}
& (2 \cdot 3 \cdot 2.5)(2.3 \cdot 2.5) \\
& 60 \cdot 60
\end{aligned}
$$

Example 2: Determining the Cube Root of a Whole Number
Determine the cube root of 2744.

$$
\begin{aligned}
& (2.7)(2 \cdot 7)(2 \cdot 7) \\
& 14 \cdot 14 \cdot 14
\end{aligned} \quad \therefore \sqrt[3]{2744}=14
$$

$$
\begin{aligned}
& p g 79 \\
& \# 3 g, 4 f, j \\
& \text { Try } 70 \\
& \text { pg } 70, c
\end{aligned}
$$

