Lesson 1 Factors and Multiples of Whole Numbers

Definitions:

Factor: a number that divides evenly into another number
ie. factors of 18 are $1,2,3,6,9$, and 18

Multiples: of a number are determined by multiplying the number by any whole number other than 1 (or by skip counting) ie. some multiples of 6 are $6,12,18,24 \ldots$

Greatest Common Factor (GCF): of two or more terms is the greatest factor the terms have in common.
ie. the greatest common factor of 28 and 42 is 14
Prime Factorization: of a natural number is the number written as a product of its prime factors.
ie. the prime factorization of 60 is $2^{2} \cdot 3 \cdot 5$
Least Common Multiple (LCM): of two or more numbers is the least number that is divisible by each number.
ie. the least common multiple of 5 and 6 is 30

Example 1: Determining Prime Factors

Determine the prime factorization of 240.

$$
\begin{array}{r}
\text { Try } 192 \\
2^{6} \cdot 3
\end{array}
$$

Example 2: Determining Greatest Common Factor (GCF)

Determine the GCF of 138 and 198

$$
\begin{array}{cc}
\text { GCF } & 2.3 \\
6
\end{array}
$$

$$
\begin{aligned}
& \text { Try } 81 \\
& \text { and }
\end{aligned}
$$

Example 3: Determining the Least Common Multiple

Determine the least common multiple of 18,20 , and 30 .

$$
\begin{gathered}
\text { CF } 27 \\
\text { Try } 65 \text { and } \\
104 \\
\text { GCF } 13
\end{gathered}
$$

LCM

$$
\begin{gathered}
2^{2} \cdot 3^{2} \cdot 5 \\
180
\end{gathered}
$$

Take each prime
number the largest amount of times

$$
\begin{aligned}
& \text { amount of times } \\
& \text { it occurs in one tree }
\end{aligned}
$$

Example 4: Solving Problems Involving GCF and LCM

a) Determine the side length of the smallest square that could be tiled with rectangles that measure 16 cm by 40 cm . Assume the rectangles cannot be cut. Sketch the square and rectangles.

18 and 30

Try $\begin{aligned} & 15 \\ & \text { and } 20 \\ & \qquad \mathrm{~cm} 60\end{aligned}$
Assign
pg 140

+ $5 e, 6 d$ ob ,d
rOc, d

Example 4: Solving Problems Involving GCF and LCM

a) Determine the side length of the smallest square that could be tiled with rectangles that measure 16 cm by 40 cm . Assume the rectangles cannot be cut. Sketch the square and rectangles.
b) Determine the side length of the largest square that could be used to tile a rectangle that measures 16 cm by 40 cm . Assume that the squares cannot be cut. Sketch the rectangle and squares.

L2 Perfect Squares and Cubes

Tuesday, September 6, 2022

W L2 Perfect Squares and Cubes

Lesson 2 Perfect Squares, Cubes, and their Roots

Recall:

Perfect Square: a number that can be expressed as the product of two equal factors ie. $1,4,9,16,25,36,49,64 \ldots$

Square Root: a number which multiplied by itself, gives you the original number

Perfect Cube: a number that can be expressed as the product of three equal factors ie. $1,8,27,64,125,216 \ldots$

Cube Root: a number which multiplied by itself three times produces the original number

Example 1: Determining the Square Root of a Whole Number

Determine the square root of 1600 .

Example 2: Determining the Cube Root of a Whole Number

Determine the cube root of 1728 .

Example 3: Using Roots to Solve Problems

A square has an area of $576 \mathrm{~cm}^{2}$. Determine the side length of the square.

