Lesson One - Developing Properties of Linear Systems

A system of linear equations is a set of two or more linear equations $(y=m x+b)$ with the same variables (x and y).

The solution of the system of linear equations is the set of all ordered pairs that satisfies the equations. In other words, it is the point where the two lines intersect.

There are 3 types of systems of linear equations:

- Independent
- Inconsistent
- Dependent

Independent Systems: systems of equations that intersect at 1 point. They have 1 ordered pair that is the solution.

Example: Graph: $y=3 x+2$

$$
2 y=x-6
$$

The lines in this type of system have different slopes and intersect at 1 point. This point is the solution to the system.

Inconsistent Systems: These are systems of equations that intersect at 0 points. They have no solution.

Example: Graph: $y=2 x+2$

$$
y=2 x-4
$$

The lines in this type of system are parallel. They have the same slope and different y-intercepts. There is no solution to this system of equations since the lines never intersect.

Dependent Systems: These are systems of equations that intersect at all points. They have an infinite number of solutions.

Example: Graph: $3 y=-6 x+3$

$$
y=-2 x+1
$$

Actually, both the lines are the same. Since they have the same slope and the same y-intercept, they are coincident lines, and have an infinite number of solutions.

Summary: Three types of systems

1. Independent system/intersecting lines (ONE solution)
2. Dependent system/coincident lines/infinite number of solutions (INFINITE)
3. Inconsistent systems/parallel lines/no solution (NONE)
