Integration by Parts (cont'd)
ex. 1 Find $\int x^{2} e^{x} d x$

$$
\begin{aligned}
\int x^{2} e^{x} d x & =x^{2} e^{x}-\int e^{x} \cdot 2 x d x \\
& =x^{2} e^{x}-2 \int x e^{x} d x \leftarrow \int u d u \\
& =x^{2} e^{x}-2\left(x e^{u}-\int e^{x} d x\right) \\
& =x^{2} e^{x}-2 x e^{x}+2 e^{x}+c
\end{aligned}
$$

ex. 2 Find $\int e^{x} \cos x d x$

$$
\begin{aligned}
& \int e^{x} \cos x d x=\cos x e^{x}-\int e^{x}(-\sin x d x) \\
&=\cos x e^{x}+\frac{\int e^{x} \sin x d x}{v} d u \\
& \int e^{x} \cos x d x=\cos x e^{x}+e^{x} \sin x-\int e^{x} \cos x d x \\
& R \int e^{x} \cos x d x=e^{x} \cos x+e^{x} \sin x \\
& \int e^{x} \cos x d x=\frac{1}{2} e^{x} \cos x+\frac{1}{2} e^{x} \sin x+c \\
& \text { ord } x \\
& \text { or }=\frac{1}{2} e^{x}(\cos x+\sin x)+c
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Integration by parts again! } \\
u=x & d v=e^{x} d x \\
d u=d x & v=e^{x}
\end{array}
$$

$$
u=\cos x \quad d v=e^{x} d x
$$

$d u:-\sin x d x \quad v=e^{x}$

$$
\begin{aligned}
u & =\sin x \quad d v \\
d u & =e^{x} d x \\
d x & =\cos x d x
\end{aligned}
$$

pg. 346

$$
\begin{aligned}
& 346 \\
& \# 7,8,10,17,19)
\end{aligned}
$$

Ans
8)

$$
2 x^{2} \sin \left(\frac{x}{2}\right)+8 x \cos \left(\frac{x}{2}\right)-16 \sin \left(\frac{x}{2}\right)+c
$$

10) $\frac{t^{3}}{3} \ln t-\frac{t^{3}}{9}+c$
