Integration By Parts
Formula

$$
\int u d v=u \cdot v-\int v d u
$$

ex. 1 Evaluate

$$
\begin{aligned}
& \int x \sin (3 x) d x \\
& u=x \leftarrow \text {-Algebraic } d v=\sin (3 x) d x \leftarrow \text { Trig } \\
& d u=d x \\
& \begin{array}{l}
d u=d x \\
\int x \sin (3 x) d x=x\left(-\frac{1}{3} \cos (3 x)\right)-\int-\int v d u
\end{array} \\
& =-\frac{1}{3} x \cos (3 x)+\frac{1}{3}\left(\frac{1}{3} \sin (3 x)\right)+C \\
& =-\frac{1}{3} x \cos (3 x)+\frac{1}{9} \sin (3 x)+c \\
& \text { ex. } 2 \text { Find } \int x e^{2 x} d x \\
& \begin{aligned}
\int x e^{2 x} d x & =x\left(\frac{1}{2} e^{2 x}\right)-\int \frac{1}{2} e^{2 x} d x \\
& =\frac{1}{2} x e^{2 x}-\frac{1}{2}\left(\frac{1}{2} e^{2 x}\right)+c
\end{aligned} \\
& \begin{array}{l}
\\
\int x e^{2 x} d x \\
=x\left(\frac{1}{2} e^{2 x}\right)-\int \frac{1}{2} e^{2 x} d x \\
=\frac{1}{2} x e^{2 x}-\frac{1}{2}\left(\frac{1}{2} e^{2 x}\right)+c
\end{array} \\
& =\frac{1}{2} x e^{2 x}-\frac{1}{4} e^{2 x}+c \\
& \int \sin (3 x) d x \\
& \begin{array}{r}
u=3 x \\
d u: \\
\frac{1}{3} d u= \\
\int \sin (3 x) d x \\
\frac{1}{3} \int \sin u d u \\
-\frac{1}{3} \cos u
\end{array} \\
& \begin{array}{r}
\frac{1}{3} d u \\
\int \sin 23 x \\
\frac{1}{3} \int \sin u d u \\
-\frac{1}{3} \cos u
\end{array} \\
& u=x \leftarrow A l g \\
& d u=d x \\
& n: 3 x \\
& d x: 3 d x \\
& \frac{1}{3} d u=d x \\
& \text { Twig lon is "u" } \\
& \text { Exp } \\
& \text { Logs } \\
& \text { Inv trig } \\
& \text { Algebraic. } \\
& \text { xp } \\
& V=-\frac{1}{3} \cos (3 x) \\
& u \quad-\int v d u \\
& 3 x)+\frac{1}{3}\left(\frac{1}{3} \sin (3 x)\right)+ \\
& \text { - } \\
& \text { du: } x^{x} \\
& \text { : } \\
& \int \sin (3 x) d x
\end{aligned}
$$

* Used when integral contains a different types of fans where one is not the derivative of the other.

To pick "u"
ex. 3 Find $\int \ln x d x$

$$
\begin{aligned}
\int \ln x d x & =x \ln x-\int x\left(\frac{1}{x} d x\right) \\
& =x \ln x-\int d x \\
& =x \ln x-x+c \\
& =x(\ln x-1)+c
\end{aligned}
$$

