Pre-Calculus 11

Graphing Reciprocals of Quadratic Functions

When we graph the reciprocal of a quadratic function, the quadratic function may have 0,1 , or 2 vertical asymptotes.

$$
\text { (parabolas have } 0,1 \text { or } 2 x \text {-int) }
$$

There are 3 basic shapes

Shape 1 - Funnel or Inverted Funnel

- This shape has one vertical asymptote

$$
y=\frac{1}{x^{2}} \text { or } y=\frac{1}{(x-h)^{2}}
$$

Shape 2-H-Shape (asymptotes form an H)

- This shape has two vertical asymptotes

$$
y=\frac{1}{x^{2}-k}
$$

Shape 3 - The Speed Bump or Pot Hole

- This shape has no vertical asymptote

Funnel or Inverted Funnel (One Vertical Asymptote)

Graph $y=\frac{1}{(x-1)^{2}}$
Step 1: Sketch the graph $y=(x-1)^{2}$

$x=1$

Step 2: Sketch vertical asymptotes at the x intercepts. This is also the restrictions on the denominator. by $\quad(x \neq 1)$
Note the horizontal asymptote is the x-axis, $y \neq$ 0
$y=0$

Step 3: Plot the invariant points. Where $y= \pm 1$
reciprocal of \mid is 1 and
Step 4: Sketch the graph, approaching the asymptotes

Graph $y=\frac{1}{-(x+2)^{2}}$

$$
\begin{array}{r}
y=-(x+2)^{2} \\
\text { reflected, left } 2 \\
\text { opens down } \\
D: x \neq-2 \\
R: y<0 \\
\text { or } \\
(-\infty, 0)
\end{array}
$$

H-Shape (Two Vertical Asymptotes)

Steps:

1. Sketch the quadratic function
2. Sketch vertical asymptotes through the x -intercepts
3. Plot the invariant points
4. Take the main points and find their reciprocals \quad min value @ - 4
5. Sketch the graph.
6. Remember to erase the original graph or clearly label

Graph $y=\frac{1}{x^{2}-4}$

$$
y=x^{2}-4_{\text {down } 4}
$$

$$
D: x \neq \pm 2
$$

* $R:\left(-\infty,-\frac{1}{4}\right] \cup$
$(0, \infty)$

Graph $y=\frac{1}{(x-1)(x+1)}$

$$
\begin{aligned}
& y=(x-1)(x+1) \leftarrow \text { diff of } \\
& y=x^{2}-1 \\
& \text { squares } \\
& D: x \neq \pm 1 \\
& R:(-\infty,-1] \cup \\
& (0, \infty)
\end{aligned}
$$

Speed Bump or Pot Hole (No Vertical Asymptote)

Graph $y=\frac{1}{x^{2}+3} \quad$ parabola does

$$
y=x^{2}+3
$$

$$
\min @ 3
$$

$$
\text { reciprocal } \frac{1}{3}
$$

Use the graph of each reciprocal function $y=\frac{1}{f(x)}$ to graph the quadratic function $y=f(x)$.
a)

all values on $y=\frac{1}{f(x)}$ are - be
\therefore all values on $y=f(x)$ will be -re
b)

reciprocal of $\frac{1}{4}$ is 4
plot these points
$(1,4)$ and $(3,4)$
$D: x \in \mathbb{R}$
$R:\left(0, \frac{1}{3}\right]$

Draw in the reciprocal of the following graph:

$$
\begin{array}{r}
\text { pg. } 68^{0} \\
\# 5,6,8 a, d \\
9 a, c, 11 a, b \\
m c \geqslant 1-3
\end{array}
$$

