Pre-Calculus 11 Graphing Reciprocals of Quadratic Functions

When we graph the reciprocal of a quadratic function, the quadratic function may have 0, 1, or 2 (parabolas have o, 1 or 2 x-ints) vertical asymptotes.

There are 3 basic shapes

Shape 1 - Funnel or Inverted Funnel

• This shape has one vertical asymptote

Shape 2 - H-Shape (asymptotes form an H)

This shape has two vertical asymptotes

$$\sqrt{x} = \sqrt{\frac{1}{x^2 - k}}$$

Shape 3 - The Speed Bump or Pot Hole

• This shape has no vertical asymptote

Funnel or Inverted Funnel (One Vertical Asymptote)

Graph
$$y = \frac{1}{(x-1)^2}$$

Step 1: Sketch the graph $y = (x - 1)^2$

Step 2: Sketch vertical asymptotes at the xintercepts. This is also the restrictions on the denominator.

(cannot divide by o)

Note the horizontal asymptote is the x-axis, $y \neq$

Step 3: Plot the invariant points. Where $y = \pm 1$ reciprocal of 1 is 1 and of -1 is -! R: y > 0 $(0, \infty)$

asymptotes

Graph
$$y = \frac{1}{-(x+2)^2}$$

H-Shape (Two Vertical Asymptotes)

Steps:

- 1. Sketch the quadratic function
- 2. Sketch vertical asymptotes through the x-intercepts
- 3. Plot the invariant points
- 4. Take the main points and find their reciprocals
- 5. Sketch the graph.
- 6. Remember to erase the original graph or clearly label

Graph
$$y = \frac{1}{x^2 - 4}$$

Graph
$$y = \frac{1}{(x-1)(x+1)}$$

$$\gamma = (x-1)(x+1)$$
 \leftarrow diff of squares $\gamma = x^2 - 1$

.

Speed Bump or Pot Hole (No Vertical Asymptote)

Graph
$$y = \frac{1}{x^2 + 3}$$

parabula doesn't have x-int(s)

y = x2+3

min@3 reciprocal 3

D: X E IR R: (0, 5)

Use the graph of each reciprocal function $y = \frac{1}{f(x)}$ to graph the quadratic function y = f(x).

all values on y = f(x)are -ve

are all values on y = f(x) will be

ve

reciprocal of 4 is 4
plot these points
(1,4) and (3,4)

Draw in the reciprocal of the following graph:

Pg. 680 #5,6,8a,d Qa,c 11a,5 MC #1-3