L8 Factoring Special Polynomials

w L8 Factoring Special Polynomials

Lesson 8 Factoring Special Polynomials

Example 1 - Perfect Square Trinomials
 (same factor twice)

Factor each trinomial. (Recall: You can verify by multiplying the factors.)

or

$$
(2 x+3)^{2}
$$

b) $4-\underline{20 x}+25 x^{2}$
rewrite

$$
\text { or }(5 x-2)^{2}
$$

Difference of Squares

A Difference of Squares is a binomial of the form $a^{2}-b^{2}$.

$$
\begin{aligned}
& t^{2}-b^{2} \\
& (a+b)(a-b)
\end{aligned}
$$

A difference of squares results when you multiply two binomials that are the sum and the difference of the same two quantities (conjugates).

$$
\begin{aligned}
& (x+y)(x-y) \\
& x^{2}-x y+x y-y^{2} \\
& x^{2}-y^{2} \\
& \text { Perfect square minus Perfect square }
\end{aligned}
$$

Example 3 - Factoring a Difference of Squares
Factor each binomial.

$$
\begin{aligned}
& \text { a) } 36 x^{2}-25 \\
& (6 x+5)(6 x-5)
\end{aligned}
$$

Square root first and last terms Opposite signs $(t,-)$

$$
\begin{aligned}
& \text { b) } 16 m^{2}-49 n^{2} \\
& (4 m-7 n)(4 m+7 n) \\
& \text { or } \\
& (4 m+7 n)(4 m-7 n) \\
& \text { c) } \frac{3 a^{3}}{3 a}-\frac{12 a b^{2}}{3 a} \\
& \text { CF } 3 a\left(a^{2}-\frac{4 b^{2}}{C} 3 a(a+2 b)(a-2 b)\right.
\end{aligned}
$$

d) $x^{4}-16$
$\left(x^{2}+4\right)\left(x^{2}-4\right)$ $\left(x^{2}+4\right)(x-2)(x+2)$ diff squares

Note:
a sum of squares does not factor

Factoring special Cases sheet (odds)

Try $4 x^{2}-81$

$$
18 x^{2}-2
$$

