L6 Factoring Special Polynomials

Thursday, September 22, 2022 8:50 AM
W) L6 Factoring Special Polynomials

Factors and Products Page 1

Lesson 6 Factoring Special Polynomials

Example 1 - Perfect Square Trinomial

Factor each trinomial. (Recall: Use multiplication to check.)

b) $121-44 x+4 x^{2}$
rewrite
sum

$$
\underbrace{(2 x-11)(2 x-11)}_{-22 x} \text { or }(2 x-11)^{2} \quad \begin{aligned}
& 4 x^{2}-44 x+121 \\
& 2 \sqrt{2 \sqrt{a} \sqrt{c}} \begin{array}{l}
2 \sqrt{4} \sqrt{121} \\
2(2)(11) \\
44
\end{array} \\
& \hline
\end{aligned}
$$

Difference of Squares

A Difference of Squares is a binomial of the form $a^{2}-b^{2}$.
\rightarrow subtract \qquad
A difference of squares results when you multiply two binomials that are the sum and the difference of the same two quantities (conjugates).

$$
(x+y)(x-y)
$$

$$
a^{2}-b^{2}
$$

$$
(a+b)(a-b)
$$

$$
\begin{gathered}
x^{2}-x y+x y-y^{2} \\
x^{2}-y^{2}
\end{gathered}
$$

Example 3 - Factoring a Difference of Squares \quad mi ms

Factor each binomial.
a) $36 x^{2}-25$

$$
(6 x-5)(6 x+5)
$$

b) $16 x^{2}-49 y^{2}$
$(4 x+7 y)(4 x-7 y)$
c) $\frac{3 a^{3}}{3 a}-\frac{12 a b^{2}}{3 a}$
$3 a\left(a^{2}-4 b^{2}\right)$ difference of squares
CF $3 a(a+2 b)(a-2 b)$
d) $x^{4}-16$

$$
\left.\begin{array}{c}
\left(x^{2}+4\right. \\
\text { doessit }
\end{array}\right)\left(\begin{array}{c}
\left(x^{2}-4\right) \\
\text { difference r } \\
\text { of } \\
\text { squares } \\
\text { sum of } \\
\text { squares }
\end{array}\right)
$$

e) $(x+y)^{2}-64$

$$
(x+y+8)(x+y-8)
$$

f) $(x+1)^{2}-(y+3)^{2}$

$(x+y+4)(x+1-y-3)$
$(x+y+4)(x-y-2)$
g) $x^{2 n}-25$

$$
\left(x^{n}-5\right)\left(x^{n}+5\right)
$$

Try

$$
x^{2}-9 \quad(x-3)(x+3)
$$

$$
2 x^{2}-32
$$

$$
2\left(x^{2}-16\right)
$$

$$
\begin{aligned}
& 2\left(x^{2}-16\right) \\
& 2(x-4)(x+4)
\end{aligned}
$$

$x^{n} \cdot x^{n}$ add exponents

$$
\begin{aligned}
& x^{n+n} \\
& x^{2 n}
\end{aligned}
$$

* Brackets after a minus sign

$$
\begin{array}{rl}
p g & 155 \\
\# & =5 b, d, h, i, j, m, n, p \\
& 6 a, c, g \\
7 e, f, j \\
\text { Try } 9 a, f
\end{array}
$$

