First Derivative Test
(1) Find $f^{\prime}(x)$ and critical values of $f(x)$
(2) Make a number line chart
(3) If $f^{\prime}(x)$ changes from:

-re to tue \Rightarrow relative minimum +re to -re \longrightarrow rel. max no chang \rightarrow either maxior min

Recall
Number line steps
(1) Find $f^{\prime}(x)$ in factored form
(2) Find the zeroes and write on a number lines
(3) Test values around the zeroes for tie or $-v$ s * signs aster nate except armed a double coot
xi Show that $y=-x^{2}+4 x+5$ has a max value.

$$
\begin{gathered}
y^{\prime}=-2 x+4 \\
0=-2 x+4 \\
x=2
\end{gathered}
$$

$$
\therefore \text { max } e x=2
$$

If we want the max. value we sub $x=2$

$$
\begin{aligned}
& \text { into } y=\frac{-x^{2}+4 x+5}{\text { the original fen }}
\end{aligned}
$$

2x.2 Find the extreme v values of $y=2 x^{3}+3 x^{2}$

sub in to $y=2 x^{3}+3 x^{2}$

$$
\begin{aligned}
& =2 x^{3}+3 x^{2} \\
& f(-1)=1 \\
& f(0)=0
\end{aligned} \quad \max \text { o } 1 \text { \& } x=-1
$$

worksheet

$$
\begin{gathered}
3 a-c \\
5 a, c, e \\
\text { pg. } \begin{array}{c}
194 \\
* 11,13
\end{array}
\end{gathered}
$$

$$
\begin{gathered}
y=-x^{2}+4 x+5 \\
0=-\left(x^{2}-4 x-5\right) \\
(x-5)(x+1)= \\
x=5 \quad x=-1 \\
y=-(2)^{2}+4(2)+5
\end{gathered}
$$

