Expressing Probabilities.notebook

Expressing Probabilities

Probability

- the mathematical likelihood of something happening
- A ratio that compares the number of possible successful outcomes to the total number of possible outcomes.

$$
\begin{aligned}
\text { Probability of an event }= & \frac{\text { Number of desired outcomes }}{\text { Total possible outcomes }} \\
\text { Number of outcomes }= & P(\text { event }) \times \text { Total number of events } \\
& \text { (as a decimal) }
\end{aligned}
$$

Four Wavs to Express Probability

1) words
2) percentages
3) fractions
4) decimals

Example 1

A fisheries officer needs to measure the length of three different kinds of fish - pike, trout, and whitefish. The lake has been stocked with 250 fish.

- 25 fish are pike

250 . 75 fish are trout
fish . 100 fish are whitefish
50 other
The officer catches the first fish to be measured. What is the probability that the fish is:
a) A pike (express as a fraction)

$$
\begin{aligned}
& P(\text { pike })=\frac{25}{250} \\
&=\frac{1}{10} \longleftarrow \text { don't need to } \\
& \text { reduce }
\end{aligned}
$$

Expressing Probabilities.notebook

EM40S
Lesson 1
Expressing Probabilities
b) A trout (express as a decimal) $P($ trout $)=\frac{75}{250} \longleftarrow$ start with fraction

$$
\text { male } 75 \div 250=0.3
$$

c) A whitefish (express as a percent) $\begin{aligned} P(w h i t e f i s h) & =\frac{100}{250} & =0.4\end{aligned} \quad \begin{aligned} 0.4\end{aligned}$
d) Any one of these three kinds of fish (express using words)

$$
\begin{aligned}
& p(p, t \text { or } w)=\frac{200}{250} \\
&=\frac{4}{5} \text { The probability of that fish being a } \\
& \text { pike, trout or whitefish is } \\
& 4 \text { at of } 5 .
\end{aligned}
$$

Example 2

Determine the probability of drawing a diamond from a well-shuffled deck of cards. State your answer as:
a) a fraction $\frac{13}{52}$
$\frac{1}{4}$
b) a ratio 13:52
1:4
c) a decimal
d) a percent
0.25

$$
25 \%
$$

e) using words

The probability of drawing a diamond is 1 out of 4 .

Example 3

If you made 20 draws in Example 2 (returning each card), how many diamonds would you theoretically expect to draw?

$$
\begin{aligned}
\text { Number of outcomes } & =P(\text { event } \times \# \text { of events } \\
& =0.25 \times 20
\end{aligned}
$$

$$
=5 \text { diamonds }
$$

in our trial
4 diamonds

25%
Probability

Expressing Probabilities.notebook

52 cards
4 suits
13 cards in each suit

Expressing Probabilities.notebook

Example 4

The probabilities for having a certain hair colour in Canada are given in the following chart.

a) Complete the chart.
b) In a class of 30 students, approximately 70% of them should have brown hair. This would be equivalent to 21 students ($30 \times 70 \%$). Based on the number of students in our class, how many students should have brown hair?
students
c) How many students should have blonde hair?

$$
10 \times 0.14=1.4
$$

$$
=1 \text { student }
$$

d) How many students should have black hair? in class I have blonde

$$
10 \times 0.1=1 \text { student } \leftarrow \text { theoretical }
$$

e) How many students should have red hair?

$$
\begin{gathered}
\text { in class } 0 \text { have black hair } \\
\text { exp }
\end{gathered}
$$

$$
10 \times 0.06=0.6 \quad=1 \text { student }
$$

$$
\text { in clers } 0 \text { have red hair }
$$

$$
\begin{aligned}
& 10 \times 0.70=7 \\
& \text { students } \\
& \longleftarrow \text { theoretical } \\
& \begin{array}{l}
\text { incas } 9 \text { have brown hair } \\
\text { experimental }
\end{array}
\end{aligned}
$$

