PC40S Review - Exponents and Logarithms

Exponential Equations (Common Base)

Solve.

1. $27^{x}=9^{2 x-1}$
2. $4^{2 x-1}=64$
3. $6^{3 x-6}=1$
4. $2^{-x}=128$
5. $5^{4-x}=\frac{1}{5}$
6. $32^{3 x-2}=64$
7. $2^{-2 x}=32$
8. $4^{8 x}=\frac{1}{16}$
9. $3^{2 x-1}+1=2$
10. $3\left(5^{x+1}\right)=15$

Answers:

1. 2
2. 2
3. 2
4. -7
5. 5
6. $\frac{16}{15}$
7. $-\frac{5}{2}$
8. $-\frac{1}{4}$
9. $\frac{1}{2}$
10. 0

Logarithms

Express in logarithmic form.

1. $3^{2}=9$
2. $6^{3}=216$
3. $4^{5}=1024$
4. $8^{0}=1$
5. $49^{\frac{1}{2}}=7$
6. $5^{-2}=\frac{1}{25}$
7. $8^{\frac{2}{3}}=4$
8. $9^{-1}=\frac{1}{9}$
9. $10^{4}=10000$
10. $a^{b}=c$

Answers:

1. $\log _{3} 9=2$
2. $\log _{6} 216=3$
3. $\log _{4} 1024=5$
4. $\log _{8} 1=0$
5. $\log _{49} 7=\frac{1}{2}$
6. $\log _{5} \frac{1}{25}=-2$
7. $\log _{8} 4=\frac{2}{3}$
8. $\log _{9} \frac{1}{9}=-1$
9. $\log _{10} 10000=4$
10. $\log _{a} c=b$

Express in exponential form.

1. $\log _{5} 5=1$
2. $\log _{7} 49=2$
3. $\log _{3} 729=6$
4. $\log _{2} \frac{1}{16}=-4$
5. $\log _{10} 1=0$
6. $\log _{16} 4=0.5$
7. $\log _{8} 4=\frac{2}{3}$
8. $\log _{2} 4096=12$
9. $\log 0.1=-1$
10. $\log _{3} \sqrt{3}=0.5$

Answers:

1. $5^{1}=5$
2. $7^{2}=49$
3. $3^{6}=729$
4. $2^{-4}=\frac{1}{16}$
5. $10^{0}=1$
6. $16^{0.5}=4$
7. $8^{\frac{2}{3}}=4$
8. $2^{12}=4096$
9. $10^{-1}=\frac{1}{10}$
10. $3^{0.5}=\sqrt{3}$

Evaluate

1. $\log _{2} 32$
2. $\log _{3} 27$
3. $\log 1000$
4. $\log _{7} 7$
5. $\log _{9} 1$
6. $\log _{5} 625$
7. $\log _{2} 2^{9}$
8. $\log _{6} \frac{1}{36}$
9. $\log _{2} 0.25$
10. $\log 0.0001$
11. $\log _{6} \sqrt{6}$
12. $\log _{2} 8 \sqrt{2}$

Answers:	
1.5	2.3
3.3	4.1
5.0	6.4
7.9	$8 .-2$
$9 .-2$	$10 .-4$
$11 . \frac{1}{2}$	$12 . \frac{7}{2}$

Answers:

1. 5
2. 1
3. 0
4. -2
5. $\frac{7}{2}$

Evaluate using the Change of Base Theorem

1. $\log _{13} 6$
2. $\log _{6} 17$
3. $\log _{3} \frac{1}{5}$
4. $\log _{4} 8$
```
Answers:
```

1. 0.699
2. 1.581
3. -1.465
4. 1.5

Laws of Logarithms

Evaluate.

1. $2 \log _{3} 12-2 \log _{3} 4$
2. $\log _{4} 6+\log _{4} \frac{64}{3}-\log _{4} 8$
3. $\log _{3}(9 \times 27 \times 81)$
4. $\frac{1}{2} \log _{3} 144-\log _{3} 4+\log _{3} 3$.

Answers:

1. 2
2. 2
3. 9
4. 2
5. 3
6. 1
7. 1
8. $7^{\log _{7} 3}$
9. $\log _{5} \sqrt{175}-\log _{5} \sqrt{7}$
10. $\ln \frac{1}{e^{2}}+\ln e^{3}$

Simplify, using laws of logarithms.

1. $\log _{2} a+\log _{2} b-\log _{2} c$
2. $\log x^{2}-5 \log y$
3. $\log A+\log \sqrt{B}-3 \log C$
4. $\log _{7} \sqrt[3]{x}-\log _{7} y^{3}+2 \log _{7} y$
5. $\ln (x+3)-\ln (2 x+5)+2 \ln (x-1)$

Answers:

1. $\log _{2} \frac{a b}{c}$
2. $\log \frac{x^{2}}{y^{5}}$
3. $\log \frac{A \sqrt{B}}{C^{3}}$
4. $\log _{7} \frac{\sqrt[3]{x}}{y}$
5. $\ln \left(\frac{x^{2}+2 x-3}{2 x+5}\right)$

Logarithmic Equations

Solve.

1. $\log _{2}(x-2)+\log _{2} x=\log _{2} 3$
2. $\log _{2}(x-2)+\log _{2} x=3$
3. $\log _{5}(3 x+1)+\log _{5}(x-3)=3$
4. $\log _{9}(x-5)=1-\log _{9}(x+3)$
5. $\log _{2}\left(x^{2}+8\right)-\log _{2} 6=\log _{2} x$
6. $\log (2 x+1)=1+\log (x-2)$
7. $\log _{3}(x-2)+\log _{3} 10-\log _{3}\left(x^{2}+3 x-10\right)=0$
8. $\left(\log _{3} x\right)^{2}=\log _{3} x^{2}+3$
9. $\ln (x+1)+\ln (x-1)=\ln (x+5)$
10. $\ln (5 x+8)=\ln (40-3 x)$

Exponential Equations (No Common Base)

Solve. Express your answers correct to 3 decimal places.

1. $2^{x+3}=17^{x}$
2. $17^{x+4}=196^{3 x-2}$
3. $21^{2 x+5}=278^{3 x-7}$
4. $0.63^{x-4}=5^{2 x}$
5. $7 \times 2^{x}=5^{x-2}$
6. $485 \times 5^{x+2}=12^{2 x-1}$
7. $4+3 e^{2 x+1}=8$
8. $3^{2 x-1}=2^{2-x}$
9. $e^{2 x}=7$
10. $e^{4 x}=5^{3 x+1}$

Answers:

1.3	2.4
3.8	4.6
$5.2,4$	$6 . \frac{21}{8}$
7.5	$8 . \frac{1}{3}, 27$
9.3	10.4

Answers:

1. 0.972
2. 1.684
3. 5.060
4. 0.502
5. 5.637
6. 3.358
7. -0.356
8. 0.860
9. 0.973
10. -1.943

Applications

1. Melissa has recently inherited $\$ 15000$ that she wants to deposit into a savings account for 10 years. She has determined that her two best bets are an account that compounds annually at a rate of 3.95% and an account that compounds continuously at an annual rate of 3.85%. Which account would pay Melissa more interest?
2. Bill has come upon a 37 gram sample of iodine-131. He isolates the sample and waits for 2 weeks. After this time period, only 11 grams of iodine-131 remains. What is the half-life of this isotope?
3. Katherine is working in a lab, testing bacteria populations. Starting with a population of 870 bacteria, she notices that the population doubles every 22 minutes. Determine the time it would take for the population to reach 7500 bacteria. Use the equation $A=P e^{r t}$, where A is the final amount, P is the original amount, r is the rate of growth, and t is the time in minutes.
4. The number of fruit flies in an experimental population after t hours is given by $Q(t)=20 e^{0.03 t}, t \geq 0$.
a) How large is the population of fruit flies after 72 hours?
b) Find the initial number of fruit flies in the population.
5. An investment earns interest at a rate of 4% compounded quarterly $(n=4)$. Determine how the number of years it will take for the investment to double. Use the formula $A=P\left(1+\frac{r}{n}\right)^{n t}$ where r is the annual rate of increase as a percent, and t is the time in years.
6. In April 1994, the population of a small town in Manitoba was estimated at 2500 people. The population can be represented by the equation $A=P e^{r t}$, where A is the final amount, P is the original amount, r is the annual rate of increase as a percent, and t is the time in years. Determine the annual rate of increase if there were 3900 people in April 1999. Express your answer correct to three decimal places.
```
Answers:
1. 3.95%: $22 097.15, 3.85%: $22 044.21
2. 1.14 weeks, }8\mathrm{ days
3. }68.386\mathrm{ minutes
4. a)}173\mathrm{ fruit flies
    b)}2
5. 17.415 years
6. 8.894%
```

