PC40S Review – Exponents and Logarithms

Exponential Equations (Common Base)

Solve.

1. $27^{x} = 9^{2x-1}$ 2. $4^{2x-1} = 64$ 3. $6^{3x-6} = 1$ 4. $2^{-x} = 128$ 5. $5^{4-x} = \frac{1}{5}$ 6. $32^{3x-2} = 64$ 7. $2^{-2x} = 32$ 8. $4^{8x} = \frac{1}{16}$ 9. $3^{2x-1} + 1 = 2$ 10. $3(5^{x+1}) = 15$

Answers:	
1. 2 3. 2 5. 5 7. $-\frac{5}{2}$ 9. $\frac{1}{2}$	2. 2 47 6. $\frac{16}{15}$ 8. $-\frac{1}{4}$ 10. 0

2. $\log_6 216 = 3$

4. $\log_8 1 = 0$

6. $\log_5 \frac{1}{25} = -2$ 8. $\log_9 \frac{1}{9} = -1$

10. $\log_a c = b$

Answers:

1. $\log_3 9 = 2$

3. $\log_4 1024 = 5$

5. $\log_{49} 7 = \frac{1}{2}$ 7. $\log_8 4 = \frac{2}{3}$

9. $\log_{10} 10\ 000 = 4$

Logarithms

Express in logarithmic form.

1. $3^2 = 9$	2. $6^3 = 216$
3. $4^5 = 1024$	4. $8^0 = 1$
5. $49^{\frac{1}{2}} = 7$	6. $5^{-2} = \frac{1}{25}$
7. $8^{\frac{2}{3}} = 4$	8. $9^{-1} = \frac{1}{9}$
9. $10^4 = 10\ 000$	10. $a^b = c$

Express in exponential form.

1. $\log_5 5 = 1$	2. $\log_7 49 = 2$		
$3 \log_{2} 729 = 6$	4 $\log_2 \frac{1}{2} = -4$	Answers:	
5.1053727 = 0	$1105_{16} - 1$	1. $5^1 = 5$	2. $7^2 = 49$
5. $\log_{10} 1 = 0$	b. $\log_{16} 4 = 0.5$	$3. 3^{\circ} = 729$ 5. $10^{\circ} = 1$	4. $2^{-4} = \frac{1}{16}$ 6. $16^{0.5} = 4$
7. $\log_8 4 = \frac{2}{3}$	8. $\log_2 4096 = 12$	7. $8^{\frac{2}{3}} = 4$	8. $2^{12} = 4096$
9. $\log 0.1 = -1$	10. $\log_3 \sqrt{3} = 0.5$	9. $10^{-1} = \frac{1}{10}$	10. $3^{0.5} = \sqrt{3}$

Evaluate

$1. \log_{2} 32$	$2. \log_2 27$		
3. log 1000	4. $\log_7 7$	Answers:	
5. log ₉ 1	6. log ₅ 625	1.5 3.3	2.3 4.1
7. $\log_2 2^9$	8. $\log_6 \frac{1}{36}$	5.0 7.9	6.4 82
9. log ₂ 0.25	10. log 0.0001	9. -2 11. $\frac{1}{2}$	10. –4 12. ⁷
11. $\log_6 \sqrt{6}$	12. $\log_2 8\sqrt{2}$	2	2

Evaluate using the Change of Base Theorem

1. log ₁₃ 6	2. log ₆ 17	Answers:	
3. $\log_3 \frac{1}{5}$	4. log ₄ 8	1. 0.699 3. –1.465	2. 1.581 4. 1.5

Laws of Logarithms

Evaluate.

1. $2 \log_3 12 - 2 \log_3 4$ 2. $\log_4 6 + \log_4 \frac{64}{3} - \log_4 8$ 3. $\log_3(9 \times 27 \times 81)$ 4. $\frac{1}{2} \log_3 144 - \log_3 4 + \log_3 3$. 5. $7^{\log_7 3}$ 6. $\log_5 \sqrt{175} - \log_5 \sqrt{7}$ 7. $\ln \frac{1}{e^2} + \ln e^3$

Simplify, using laws of logarithms.

- 1. $\log_2 a + \log_2 b \log_2 c$
- 2. $\log x^2 5 \log y$
- 3. $\log A + \log \sqrt{B} 3 \log C$
- 4. $\log_7 \sqrt[3]{x} \log_7 y^3 + 2\log_7 y$
- 5. $\ln(x+3) \ln(2x+5) + 2\ln(x-1)$

Answers:	
1.2 3.9 5.3 7.1	2.2 4.2 6.1

Answers:	
1. $\log_2 \frac{ab}{c}$ 3. $\log \frac{A\sqrt{B}}{C^3}$ 5. $\ln \left(\frac{x^2+2x-3}{2x+5}\right)$	2. $\log \frac{x^2}{y^5}$ 4. $\log_7 \frac{\sqrt[3]{x}}{y}$

Solve.

1. $\log_2(x-2) + \log_2 x = \log_2 3$
2. $\log_2(x-2) + \log_2 x = 3$
3. $\log_5(3x+1) + \log_5(x-3) = 3$
4. $\log_9(x-5) = 1 - \log_9(x+3)$
5. $\log_2(x^2 + 8) - \log_2 6 = \log_2 x$
6. $\log(2x + 1) = 1 + \log(x - 2)$
7. $\log_3(x-2) + \log_3 10 - \log_3(x^2 + 3x - 10) = 0$
8. $(\log_3 x)^2 = \log_3 x^2 + 3$
9. $\ln(x+1) + \ln(x-1) = \ln(x+5)$
10. $\ln(5x+8) = \ln(40-3x)$

Answers:	
1.3 3.8 5.2,4 7.5 9.3	2. 4 4. 6 6. $\frac{21}{8}$ 8. $\frac{1}{3}$, 27 10. 4

Exponential Equations (No Common Base)

Solve. Express your answers correct to 3 decimal places.

1. $2^{x+3} = 17^x$	2. $17^{x+4} = 196^{3x-2}$	Answers:	
3. $21^{2x+5} = 278^{3x-7}$	4. $0.63^{x-4} = 5^{2x}$	1. 0.972	2. 1.684
5. 7 × $2^x = 5^{x-2}$	6. 485 × $5^{x+2} = 12^{2x-1}$	5. 5.637	4. 0.502 6. 3.358
7. $4 + 3e^{2x+1} = 8$	8. $3^{2x-1} = 2^{2-x}$	70.356 9. 0.973	8.0.860 101.943
9. $e^{2x} = 7$	10. $e^{4x} = 5^{3x+1}$		

Applications

- 1. Melissa has recently inherited \$15 000 that she wants to deposit into a savings account for 10 years. She has determined that her two best bets are an account that compounds annually at a rate of 3.95% and an account that compounds continuously at an annual rate of 3.85%. Which account would pay Melissa more interest?
- 2. Bill has come upon a 37 gram sample of iodine-131. He isolates the sample and waits for 2 weeks. After this time period, only 11 grams of iodine-131 remains. What is the half-life of this isotope?

- 3. Katherine is working in a lab, testing bacteria populations. Starting with a population of 870 bacteria, she notices that the population doubles every 22 minutes. Determine the time it would take for the population to reach 7 500 bacteria. Use the equation $A = Pe^{rt}$, where A is the final amount, P is the original amount, r is the rate of growth, and t is the time in minutes.
- 4. The number of fruit flies in an experimental population after t hours is given by $Q(t) = 20e^{0.03t}, t \ge 0$.

a) How large is the population of fruit flies after 72 hours?

b) Find the initial number of fruit flies in the population.

- 5. An investment earns interest at a rate of 4% compounded quarterly (n = 4). Determine how the number of years it will take for the investment to double. Use the formula $A = P\left(1 + \frac{r}{n}\right)^{nt}$ where r is the annual rate of increase as a percent, and t is the time in years.
- 6. In April 1994, the population of a small town in Manitoba was estimated at 2 500 people. The population can be represented by the equation $A = Pe^{rt}$, where A is the final amount, P is the original amount, r is the annual rate of increase as a percent, and t is the time in years. Determine the annual rate of increase if there were 3 900 people in April 1999. Express your answer correct to three decimal places.

Answers:

1. 3.95%: \$22 097.15, 3.85%: \$22 044.21 2. 1.14 weeks, 8 days 3. 68.386 minutes 4. a) 173 fruit flies b) 20 5. 17.415 years 6. 8.894%