Derivatives of trig fens again. notebook
Deriv of Trig Fens again
ex. 1 Find the equation of the line that is tangent to the graph of $y=\tan x$ at $x=\frac{\pi}{4}$

$$
\begin{aligned}
& y^{\prime}=\sec ^{2} x \\
& m=\sec ^{2}\left(\frac{\pi}{4}\right) \\
& =\left(\frac{2}{\sqrt{2}}\right)^{2} \\
& \left.\frac{\sqrt{2}}{2}\right) \\
& y=\tan x \\
& y=\tan \frac{\pi}{4} \\
& y=1 \\
& \text { et }\left(\frac{\pi}{4}, 1\right)
\end{aligned}
$$

ex. 2 For what values of x does the graph of $f(x)=x+2 \sin x$ have a horizontal tangent?

$$
\begin{aligned}
& f^{\prime}(x)=1+2 \cos x \quad m=0 \\
& 0=1+2 \cos x \\
& -1=2 \cos x \\
& -\frac{1}{2}=\cos x \\
& x=\frac{2 \pi}{3}, \frac{4 \pi}{3}
\end{aligned}
$$

No interval given

$$
\left[\begin{array}{l}
x=\frac{2 \pi}{3}+2 k \pi \\
x=\frac{4 \pi}{3}+2 k \pi
\end{array}\right.
$$

pg. 146
\# 21,251
27
29
31
35 39
47

