Derivatives of trig fcns.notebook

c)
$$y = \frac{\sin x}{\cos x}$$

 $y = \frac{\sin x}{\cos x}$
 $y' = \frac{\cos x (\cos x) - \sin x (-\sin x)}{\cos^{2} x}$
 $y' = \frac{\cos^{2} x + \sin^{2} x}{\cos^{2} x}$
 $y' = \frac{1}{\cos^{2} x}$
 $y' = \frac{1}{\cos^{2} x}$
 $y' = \sin(x^{2} + 4)$
 $y' = -\sin(x^{2} + 4) \cdot (2x)$
 $y' = -2x \sin(x^{2} + 4)$
 $pg \cdot \frac{14b}{4} = 1 - 10$
 $25b$