Combining Functions

January 2014

Question $10 \quad 2$ marks

Given the graphs of $f(x)$ and $(f-g)(x)$, sketch the graph of $g(x)$.

Solution

> 1 mark for subtraction of $f(x)-(f-g)(x)$ 1 mark for shape representing the operation given
> 2 marks

If $f(x)=x^{3}$ and $g(x)=2 x-3$, what is the value of $\left(\frac{f}{g}\right)(-1)$?

Solution

$$
\begin{aligned}
f(-1) & =(-1)^{3} \\
& =-1
\end{aligned}
$$

$$
\begin{aligned}
g(-1) & =2(-1)-3 \\
& =-5
\end{aligned}
$$

$$
\begin{aligned}
\left(\frac{f}{g}\right)(-1) & =\frac{-1}{-5} \\
& =\frac{1}{5}
\end{aligned}
$$

$1 / 2$ mark for substituting into $f(x)$ and $g(x)$

Given $f(x)=x^{2}-1$ and $g(x)=\sqrt{x+1}$, sketch the graph of $y=f(g(x))$ and state its domain.

Solution

Method 2

x	$g(x)$	$f(g(x))$
-2		
-1	0	-1
0	1	0
1		1
2		2
3	2	3

1 mark for table of values

1 mark for graph of composite function

Domain of $f(g(x)):[-1, \infty)$ or $\{x \mid x \geq-1, x \in \mathbb{R}\}$
1 mark for restricted domain

June 2013

Question 9

1 mark

Given that $f(x)=\{(1,3),(2,5),(3,4),(4,2)\}$, find $f(f(3))$.

Solution

$$
\begin{array}{rlrl}
f(f(3)) & =f(4) & & 1 / 2 \text { mark for } f(3)=4 \\
& =2 & & 1 / 2 \text { mark for } f(4)=2 \\
& & 1 \text { mark }
\end{array}
$$

Given the graph of $f(x)$ and $g(x)$ below,

Sketch the graph of $y=f(x)-g(x)$

Solution

x	$f(x)$	$g(x)$	$f(x)-g(x)$
-4	-2	3	-5
-2	0	1	-1
-1	1	0	1
0	2	1	1
2	4	3	1

1 mark for subtraction of $f(x)-g(x)$
1 mark for restricted domain
2 marks

Given $f(x)=3$ and $g(x)=x+2$, determine the domain and range of $h(x)=\frac{f(x)}{g(x)}$.

Solution

Domain: $\{x \mid x \in \mathbb{R}, x \neq-2\} \quad 1$ mark for domain
Range: $\{y \mid y \in \mathbb{R}, y \neq 0\}$
1 mark for range

2 marks

Question 41

2 marks

Given $f(x)=\sqrt{x-2}$ and $g(x)=3 x$, write the equation for $h(x)=f(g(x))$.
What are the restrictions on the domain of $h(x)$?
Explain your reasoning.

Solution

$h(x)=\sqrt{3 x-2}$
1 mark for $h(x)=f(g(x))$
$3 x-2 \geq 0$
$3 x \geq 2$
$x \geq \frac{2}{3}$
Since we cannot find a square root of
a negative number, there is a restriction
on the domain, $x \geq \frac{2}{3}$.
$1 / 2$ mark for identifying restriction
$1 / 2$ mark for explanation
2 marks

Given $f(x)=x-1$ and $g(x)=x^{2}$, write the equation of $y=f(g(x))$ and sketch the graph.

Solution

$$
\begin{aligned}
& f(g(x))=x^{2}-1 \\
& \quad \text { or } \\
& y=x^{2}-1
\end{aligned}
$$

