Combining Functions

January 2014

Question 10 2 marks

Given the graphs of f(x) and (f - g)(x), sketch the graph of g(x).

Solution

1 mark for subtraction of f(x) - (f - g)(x)1 mark for shape representing the operation given

Question 15 1 mark

If $f(x) = x^3$ and g(x) = 2x - 3, what is the value of $\left(\frac{f}{g}\right)(-1)$?

Solution

$$f(-1) = (-1)^3$$
$$= -1$$

 $\frac{1}{2}$ mark for substituting into f(x) and g(x)

$$g(-1) = 2(-1) - 3$$
$$= -5$$

$$\left(\frac{f}{g}\right)(-1) = \frac{-1}{-5}$$
$$= \frac{1}{5}$$

 $\frac{1}{2}$ mark for evaluating $\left(\frac{f}{g}\right)(-1)$

1 mark

Question 29

3 marks

Given $f(x) = x^2 - 1$ and $g(x) = \sqrt{x+1}$, sketch the graph of y = f(g(x)) and state its domain.

Solution

Method 2

x	g(x)	f(g(x))
-2		
-1	0	-1
0	1	0
1		1
2		2
3	2	3

1 mark for table of values

1 mark for graph of composite function

Domain of $f(g(x)): [-1, \infty)$ or $\{x | x \ge -1, x \in \mathbb{R}\}$

1 mark for restricted domain

June 2013

Question 9 1 mark

Given that $f(x) = \{(1,3), (2,5), (3,4), (4,2)\}, \text{ find } f(f(3)).$

Solution

$$f(f(3)) = f(4)$$
 1/2 mark for $f(3) = 4$
= 2 1/2 mark for $f(4) = 2$
1 mark

Question 10 2 marks

Given the graph of f(x) and g(x) below,

Sketch the graph of y = f(x) - g(x)

Solution

x	f(x)	g(x)	f(x)-g(x)		
-4	-2	3	-5		
-2	0	1	-1		
-1	1	0	1		
0	2	1	1		
2	4	3	1		

1 mark for subtraction of f(x) - g(x)1 mark for restricted domain

Question 26 2 marks

Given f(x) = 3 and g(x) = x + 2, determine the domain and range of $h(x) = \frac{f(x)}{g(x)}$.

Solution

Domain: $\{x | x \in \mathbb{R}, x \neq -2\}$

Range: $\{y | y \in \mathbb{R}, y \neq 0\}$

1 mark for domain

1 mark for range

2 marks

Question 41 2 marks

Given $f(x) = \sqrt{x-2}$ and g(x) = 3x, write the equation for h(x) = f(g(x)).

What are the restrictions on the domain of h(x)? Explain your reasoning.

Solution

$$h(x) = \sqrt{3x - 2}$$

1 mark for h(x) = f(g(x))

$$3x - 2 \ge 0$$

$$3x \ge 2$$

$$x \ge \frac{2}{3}$$

½ mark for identifying restriction

Since we cannot find a square root of a negative number, there is a restriction

on the domain, $x \ge \frac{2}{3}$.

½ mark for explanation

Question 45 2 marks

Given f(x) = x - 1 and $g(x) = x^2$, write the equation of y = f(g(x)) and sketch the graph.

Solution

$$f(g(x)) = x^{2} - 1$$
or
$$y = x^{2} - 1$$

1 mark for composition

1 mark for consistent graph