Pre-Calculus 12 Combining Functions Algebraically

Recall:

$$
\begin{array}{lll}
& h(x)=f(x)+g(x) & h(x)=f(x)-g(x) \\
\text { same } & h(x)=(f+g)(x) & \\
& h(x)=f(x) \cdot g(x) & h(x)=\frac{f(x)}{g(x)}, \text { where } g(x) \neq 0
\end{array}
$$

Example 1: Sum of Functions

a) Given $f(x)=-x-5$ and $g(x)=(x+3)^{2}$, write an explicit equation for $h(x)=f(x)+g(x)$.

$$
\begin{aligned}
h(x) & =f(x)+g(x) \\
& =-x-5+(x+3)^{2} \quad \text { suls in expressions for } f(x) \text { and } g(x) \\
& =-x-5+x^{2}+6 x+9 \\
& =x^{2}+5 x+4
\end{aligned}
$$

b) Determine the domain of $h(x)$.

$$
\begin{aligned}
& \text { domain of } f(x) \text { is } x \in \mathbb{R} \\
& \text { domain of } g(x) \text { is } x \in \mathbb{R} \\
& \therefore \text { domain of } h(x) \text { is } x \in \mathbb{R}
\end{aligned}
$$

c) Evaluate $h(-2)$.

$$
\begin{aligned}
h(x) & =x^{2}+5 x+4 \\
h(-2) & =(-2)^{2}+5(-2)+4 \\
& =-2
\end{aligned}
$$

Combining Functions Algebraically.notebook

Example 2: Difference of Functions

a) Given $f(x)=x^{2}$ and $g(x)=2 x+1$, write an explicit equation for $h(x)=f(x)-g(x)$.
$h(x)=f(x)-g(x)$
$=x^{2}-\frac{(2 x+1)}{(2 x+1} g(x)$ must be in brackets
$=x^{2}-2 x-1$
b) Evaluate $h(3)$.
replace with 3

$$
\begin{aligned}
h(3) & =3^{2}-2(3)-1 \\
& =2
\end{aligned}
$$

Example 3: Product of Functions
Given $f(x)=2 x-1$ and $g(x)=x^{2}+4$, write an explicit equation for $h(x)=f(x) \cdot g(x)$.

$$
h(x)=f(x) \cdot g(x)
$$

Example 4: Quotient of Functions
a) Given $f(x)=x^{2}+x-6$ and $g(x)=2 x+6$, write an explicit equation for $h(x)=\frac{f(x)}{g(x)}$.

$$
\begin{array}{rlr}
h(x) & =\frac{f(x)}{g(x)} \\
& =\frac{x^{2}+x-6}{2 x+6} & \quad \text { factor numerator and } \\
& =\frac{(x+3)(x-2)}{2(x+3)} & \\
& =\frac{x-2}{2} & x \neq-3
\end{array}
$$

b) State the domain of $h(x)$.

$$
\begin{aligned}
& \text { domain of } f(x) \text { is } x \in \mathbb{R} \\
& \begin{aligned}
\text { domain of } g(x) & \text { is } \\
\text { but for } & f(x)=\frac{f(x)}{g(x)}, g(x) \neq 0
\end{aligned} \\
& 2 x+6 \neq 0 \\
& 2 x=-6 \\
& \text { c) Write an explicit equation for } h(x)=\frac{g(x)}{f(x)} \\
& \therefore x \neq-3
\end{aligned}
$$

$$
\begin{array}{rlr}
h(x) & =\frac{2 x+6}{x^{2}+x-6} & f(x) \neq 0 \\
& =\frac{2(x+3)}{(x+3)(x-2)} & (x+3)(x-2) \neq 0 \\
& =\frac{2}{x-2} & x \neq-3 \quad x \neq 2
\end{array}
$$

Example 5: Given $p(x)=x^{2}-9$, write the explicit equations for two functions $f(x)$ and $g(x)$ so that $p(x)=f(x) \cdot g(x)$.

$$
\begin{aligned}
& p(x)=x^{2}-9 \\
& =(x-3)(x+3) \text { : factor as a } \text { diff of squares } \\
& \therefore f(x)=x-3 \quad g(x)=x+3 \\
& \frac{\text { pg. } 483 \text { \# } 1 b, c, 2 b, 3 a, c, 10 a}{\text { pg. } 496 \text { \# } 1 a, b, \underbrace{4 a}_{\text {determine }}, 8 a} \begin{array}{c}
h(x)=(f \cdot 5)(x) \\
\text { and } \\
h(x)=\left(\frac{f}{g}\right)(x)
\end{array}
\end{aligned}
$$

