Lesson 1 Combining Functions Algebraically

Sum, Difference, Product, and Quotient of Functions
$(f+g)(x)=f(x)+g(x)$

$$
(f-g)(x)=f(x)-g(x)
$$

$(f \cdot g)(x)=f(x) \cdot g(x)$

$$
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, \text { where } g(x) \neq 0
$$

Example 1

Write an expression for each combination of functions, given the functions f, g, h, and k are defined as follows:
$f(x)=2 x-5, \quad g(x)=(x+2)^{2}, \quad h(x)=x^{2}-1, \quad k(x)=x+1$
a.) $f(x)+g(x)$

b.) $h(x)-k(x)$

$$
\begin{aligned}
& x^{2}-1-(x+1) \\
& x^{2}-1-x-1
\end{aligned}
$$

$$
x^{2}-x-2 \text {, } f(2), h(2), g(-1) \text { and } k(-1) \text { to sub in }
$$

c.) $(f \cdot h)(2)+(g \cdot k)(-1)$
same as $\rightarrow f(2) \cdot h(2)+g(-1) \cdot k(-1)$ $(-1)(3)+(1)(0)$
-3

L1 Combining Functions Algebraically.notebook

Pre-Calculus 12 Enriched Combining Functions

Example 2

Write an expression for each combination of functions, given the functions f, g, h, and k are defined as follows:
$f(x)=2 x+6, \quad g(x)=x^{3}, \quad h(x)=x^{2}+x-6, \quad k(x)=2$ $k(1)=2$
a.) $f(x) \cdot g(x)$
$(2 x+6)\left(x^{3}\right)$
0
$2 x^{4}+6 x^{3}$
b.) $\frac{k(1)}{g(2)}$
$\frac{2}{8}$
$\frac{1}{4}$
c.) $\left(\frac{h k}{f}\right)(x) \quad \frac{h(x) \cdot k(x)}{f(x)}$
$\frac{\left(x^{2}+x-6\right)(2)}{2 x+6}$

Example 3

a) Given $f(x)=x^{2}-9$ and $g(x)=x-3$, write an explicit equation for $h(x)=\frac{f(x)}{g(x)}$.

$$
\begin{aligned}
h(x) & =\frac{x^{2}-9}{x-3} \\
& =\frac{(x-3)(x+3)}{x-3} \\
& =x+3
\end{aligned}
$$

b) State the domain of $h(x)$.

$$
x \neq 3
$$

c) Write an equation for $h(x)=\frac{g(x)}{f(x)}$

$$
\begin{aligned}
h(x) & =\frac{x-3}{x^{2}-9} \\
& =\frac{x-3}{(x+3)(x-3) \quad x \neq \pm 3} \\
& =\frac{1}{x+3}
\end{aligned}
$$

Example 4
Given $p(x)=x^{2}-25$, write the equations for two functions $f(x)$ and $g(x)$ so that $p(x)=f(x) \cdot g(x)$.

$$
\begin{aligned}
p(x) & =x^{2}-25 \\
& =(x-5)(x+5) \quad \text { Factor } \\
\therefore \quad f(x) & =x-5 \\
g(x) & =x+5
\end{aligned} \quad \begin{aligned}
\text { factors }
\end{aligned} \quad \text { of } p(x)
$$

