Calculus 45S Chapter 4 Review

1.) Find the maximum and minimum values of $f(x)=x^{3}-9 x$ on the interval $-4 \leq x \leq 4$.
2.) Find the extreme values of $\frac{1}{\sqrt{9-x^{2}}}$
3.) Sketch the curve of the function $f(x)=x^{6}-10 x^{4}$.
4.) A rectangular open-topped storage bin is to have a square base and vertical sides. If $48 \mathrm{~m}^{2}$ of plywood are available for its construction, find the shape that encloses the greatest volume.
5.) A cylindrical can is to hold $20 \pi \mathrm{~m} .{ }^{3}$ The material for the top and bottom costs $\$ 10 / \mathrm{m} .{ }^{2}$ and material for the side costs $\$ 8 / \mathrm{m} .{ }^{2}$ Find the radius r and height h of the most economical can
6.) Sam blows up a spherical balloon. If the radius increases at the rate of $1 \mathrm{~cm} / \mathrm{s}$, how fast is the volume increasing when the radius is 10 cm ?
7.) Water is being poured into s cylindrical rain barrel of radius 30 cm at a rate of 500 $\mathrm{cm}^{3} / \mathrm{min}$. How fast is the water level in the barrel rising?
8.) A water tank is in the shape of an inverted right circular cone with depth 5 m and top radius of 2 m . Water leaks out of the tank at a rate proportional to the depth of the water in the tank. When the water in the tank is 4 m deep it is leaking out at a rate of $\frac{1}{12} \mathrm{~m}^{3} / \mathrm{min}$; how fast is the water level in the tank dropping at that time?
9.) A ladder 20 feet long leans against a vertical building. If the bottom of the ladder slides away from the building horizontally at a rate of $2 \mathrm{ft} / \mathrm{sec}$, how fast is the ladder sliding down the building when the top of the ladder is 12 ft above the ground?

