Pre-Calculus 12 Binomial Theorem Continued

General Term

$$
t_{k+I}={ }_{n} C_{k} x^{n-k} y^{k}
$$

$$
t_{k+1}={ }_{n} C_{k} a^{n-k} b^{k}
$$

$$
\begin{aligned}
& (x+y) \\
& (x+(-2))
\end{aligned}
$$

Ex. 1) Determine the $9^{\text {th }}$ term of $(x-2)^{10}$

$$
\begin{aligned}
{ }_{8+1}^{k+1}=9^{\text {th }} & t_{k+1}
\end{aligned}={ }^{k} C_{k} x^{n^{-k}} y y^{k}
$$

Ex. 2) Given $\left(2 x-y^{3}\right)^{6}$
a) determine the $4^{\text {th }}$ term.

$$
\begin{aligned}
& n=6 \\
& k=3
\end{aligned}
$$

$$
\begin{aligned}
t_{4} & ={ }_{6} C_{3}(2 x)^{3}\left(-y^{3}\right)^{3} \\
& =20\left(8 x^{3}\right)\left(-y^{9}\right) \\
& =-160 x^{3} y^{9}
\end{aligned}
$$

b) determine the last term. \# of terms
c) the middle term

$$
\begin{aligned}
n=6 \\
k=3
\end{aligned} \quad t_{4}={ }_{6} C_{3}(2 x)^{3}\left(-y^{3}\right)^{3}
$$

$$
t_{1} t_{2} t_{3} t_{4} t_{5} t_{6} t_{7}
$$

$$
\begin{aligned}
& \longrightarrow n+1 \\
& n=6 \quad t_{n}={ }_{6} C_{6}(2 x)^{0}\left(-y^{3}\right)^{6 \quad} \quad \begin{array}{l}
6+1=7 \text { terms } \\
\text { lat term } t_{7}
\end{array} \\
& k: 6=1(1)\left(y^{18}\right) \\
& =y^{18}
\end{aligned}
$$

$$
\begin{aligned}
& \text { * Ex. 2) In the expansion of }\left(2 x-y^{3}\right)^{12} \text {, determine which term contains } y^{15} \text {. } \\
& n=12 \\
& k=? \\
& t_{k+1}={ }_{n} C_{k} x^{n-k} y^{k} \\
& \underbrace{y^{15}=\operatorname{tach}_{k}(2 x)^{12-k}}_{\text {need these to be equal }} \\
& \therefore y^{15}=y^{3 k} \\
& 15=3 k \\
& k=5 \\
& \underbrace{t_{k+1}^{5+1}}_{6} \quad \therefore \text { the } 6^{t^{h}} \text { term contains } y^{15}
\end{aligned}
$$

Ex. 3) In the expansion of $\left(a^{2}-\frac{1}{a}\right)^{5}$ which term, in simplified form, contain a ? Determine the value of this term.

$$
\begin{aligned}
& t_{k+1}={ }_{n} C_{k} x^{n-k} y^{k} \\
& n=5 \\
& K=\text { ? ignorefficients } \\
& a^{1}=5 C_{k}\left(a^{2}\right)^{5-k}\left(+\frac{1}{a}\right)^{k} \\
& a^{\prime}=\left(a^{2}\right)^{\left(a^{-1}-k\right)}()^{k} \\
& \text { muexps } a^{\prime}=a^{10-2 k} \cdot a^{-k} \\
& \underset{\text { adept }}{\operatorname{add}} \quad a^{\prime}=a^{10-3 k} \\
& \therefore 1=10-3 k \\
& 3 k=9 \\
& k=3 \\
& \therefore y^{+h} \text { term }
\end{aligned}
$$

