## Area Between Curves (cont'd)

ex. 1 Find the area between the graphs of $y=2 x^{2}$ and


$$
\begin{array}{rlrl}
A & =\int_{0}^{4}\left(16 \sqrt{x}-2 x^{2}\right) d x & & \begin{array}{l}
\text { sub } x=1 \\
\text { see which } \\
\\
\text { y-value is }
\end{array} \\
& =\int_{0}^{4}\left(16 x^{\frac{1}{2}}-2 x^{2}\right) d x & & \begin{array}{l}
\text { greater, }
\end{array} \\
& =\left[\frac{2}{3}\left(16 x^{\frac{3}{2}}\right)-\frac{2}{3} x^{3}\right]_{0}^{4} & & \begin{array}{l}
\text { this determines } \\
\text { which fan }
\end{array} \\
& =\frac{2}{3}\left(16(4)^{\frac{3}{2}}\right)-\frac{2}{3}(4)^{3}-0 & \begin{array}{l}
\text { subtracts the } \\
\text { other }
\end{array} \\
& =\frac{256}{3}-\frac{128}{3} &
\end{array}
$$

ex. 2 Find the area of the region, $R$, bounded by $y=x^{3}-3 x^{2}-x+3$, the segment of the $x$-axis between $x=-1$ and $x=2$ and the line $y=0$ as shown below.

 pat below
$A=\int_{-1}^{1}\left(x^{3}-3 x^{\rho^{2}}-x+3-0\right) d x+\int_{1}^{2}\left(0-\left(x^{3}-3 x^{2}-x+3\right)\right) d x$

$$
A=\left[\frac{x^{4}}{4}-x^{3}-\frac{x^{2}}{2}+3 x\right]_{-1}^{1}+\left[-\frac{x^{4}}{4}+x^{3}+\frac{x^{2}}{2}-3 x\right]_{1}^{2}
$$

$$
A=\frac{1}{4}-1-\frac{1}{2}+3-\left(\frac{1}{4}+1-\frac{1}{2}-3\right)+\left(-4+8+2-6-\left(-\frac{1}{4}+1+\frac{1}{2}-3\right)\right)
$$

$$
=\frac{1}{4}+3-\frac{1}{4}-1+\frac{1}{2}+3-4+8+2-\frac{1}{4}-1-\frac{1}{2}+3
$$

$$
6-\frac{1}{4}
$$

$$
\frac{23}{4} u^{2}
$$

$$
\begin{aligned}
& \text { worksheet 6.1 } \\
& 1,5,7,11,13,15
\end{aligned}
$$

1) $\frac{6.1}{\frac{32}{3}}$
2) 7) $^{19 \frac{1}{2}}$
1) $\frac{1}{3}$

2) 72
3) $\frac{59}{12}$
