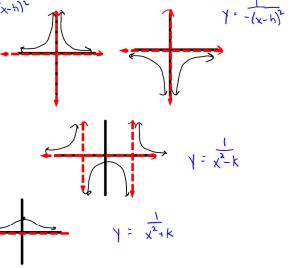

Pre-Calculus 11 Enriched Absolute Value & Reciprocal Functions

When we graph the reciprocal of a quadratic function, the quadratic function may have 0, 1, or 2 vertical asymptotes. y= (χ-h)2

There are 3 basic shapes

Shape 1 – Funnel or Inverted Funnel


· This shape has one vertical asymptote

Shape 2 - H-Shape

This shape has two vertical asymptotes

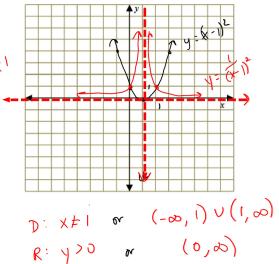
Shape 3 - The Speed Bump or Pot Hole

This shape has no vertical asymptote •

Examples

Funnel or Inverted Funnel (One Vertical Asymptote)

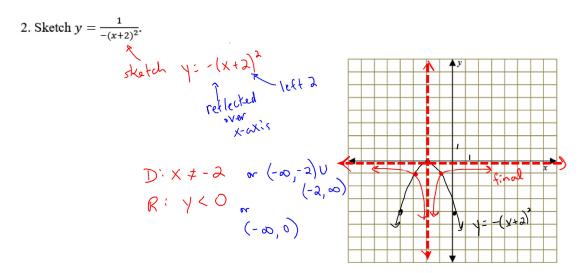
1. Sketch $y = \frac{1}{(x-1)^2}$.


Step 1: Sketch the graph $y = (x - 1)^2$

Step 2: Sketch vertical asymptotes at the xintercepts. ie. at the restrictions on the denominator.

Note: the horizontal asymptote is the x-axis since reciprocals of positive values will be positive and reciprocals of negative values will be negative.

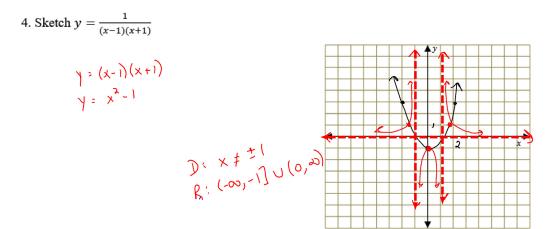
Step 3: Plot the invariant points. Where $y = \pm 1$


Step 4: Sketch the graph, approaching the asymptotes

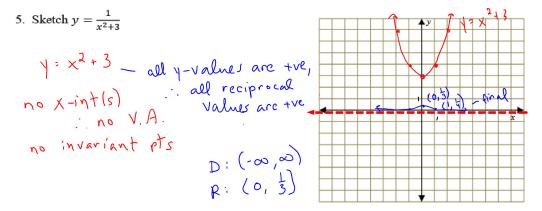
 $y = a(x-b)^2 + k$

AR L4 Graphing Reciprocals of Quadratic Functions.notebook

Pre-Calculus 11 Enriched Absolute Value & Reciprocal Functions

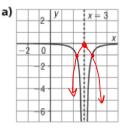

H-Shape (Two Vertical Asymptotes)

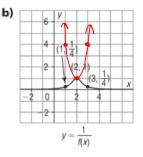
Steps:


- 1. Sketch the quadratic function
- 2. Sketch vertical asymptotes through the x-intercepts
- 3. Plot the invariant points
- 4. Plot the reciprocal of the main points.
- 5. Sketch the graph.
- 6. Remember to erase the original graph or clearly label

3. Sketch
$$y = \frac{1}{x^{2}-4}$$

Sketch $y = x^{2}-4$
D: $x \neq \pm 2$
 $x \in (-\infty), -4$ $U(0, \infty)$
 $x \in (-\infty), -4$ $U(0, \infty)$
 $y = -1$
 $y = -$


Pre-Calculus 11 Enriched Absolute Value & Reciprocal Functions



Speed Bump or Pot Hole (No Vertical Asymptote)

Given the graph of each reciprocal function $y = \frac{1}{f(x)}$, sketch y = f(x).

Assign 5

Review Pg. 214 5-8 Absolute Value Reciprocal Eco review