Lesson 4 Graphing Reciprocals of Quadratic Functions

When we graph the reciprocal of a quadratic function, the quadratic function may have 0, 1, or 2 vertical asymptotes.

There are 3 basic shapes

Shape 1 – Funnel or Inverted Funnel

• This shape has one vertical asymptote

Shape 2 – H-Shape

• This shape has two vertical asymptotes

Shape 3 – The Speed Bump or Pot Hole

• This shape has no vertical asymptote

Examples Funnel or Inverted Funnel (One Vertical Asymptote)

1. Sketch $y = \frac{1}{(x-1)^2}$.

Step 1: Sketch the graph $y = (x - 1)^2$

Step 2: Sketch vertical asymptotes at the *x*-intercepts. ie. at the restrictions on the denominator.

Note: the horizontal asymptote is the *x*-axis since reciprocals of positive values will be positive and reciprocals of negative values will be negative.

Step 3: Plot the invariant points. Where $y = \pm 1$

Step 4: Sketch the graph, approaching the asymptotes

2. Sketch
$$y = \frac{1}{-(x+2)^2}$$
.

H-Shape (Two Vertical Asymptotes)

Steps:

- 1. Sketch the quadratic function
- 2. Sketch vertical asymptotes through the x-intercepts
- 3. Plot the invariant points
- 4. Plot the reciprocal of the main points.
- 5. Sketch the graph.
- 6. Remember to erase the original graph or clearly label

3. Sketch
$$y = \frac{1}{x^2 - 4}$$

4. Sketch
$$y = \frac{1}{(x-1)(x+1)}$$

Speed Bump or Pot Hole (No Vertical Asymptote)

5. Sketch
$$y = \frac{1}{x^2 + 3}$$

Given the graph of each reciprocal function $y = \frac{1}{f(x)}$, sketch y = f(x).

Assignment 4 Reciprocals of Quadratic Functions

1.) Sketch the following reciprocal graphs.

a.)
$$y = \frac{1}{(x-3)^2}$$

b.) $y = \frac{1}{-(x+4)^2}$
c.) $y = \frac{1}{3(x-1)^2}$
d.) $y = \frac{1}{x^2-3}$
e.) $y = \frac{1}{-x^2+1}$
f.) $y = \frac{1}{-x^2+4}$
g.) $y = \frac{1}{x^2-2x-8}$

h.) $y = \frac{1}{x^2 + 2}$

Assignment 5 Reciprocals of Quadratic Functions

- 1. Given the function y = f(x), write the corresponding reciprocal function.
 - a) $y = x^2 9$

b) $y = x^2 - 7x + 10$

- 2. For each function;
 - State the zeros
 - Write the reciprocal function
 - State the non-permissible values of the corresponding rational expression
 - State the equation(s) of the vertical asymptote(s)

a)
$$f(x) = x^2 - 16$$

b)
$$g(x) = x^2 + x - 12$$

3. State the equation(s) of the vertical asymptote(s) for each function.

a)
$$f(x) = \frac{1}{(x-2)(x+4)}$$

b) $f(x) = \frac{1}{x^2 - 9x + 20}$
c) $f(x) = \frac{1}{-x^2 - 5}$

4. Determine the domain of the following functions:

a)
$$f(x) = \frac{1}{(x+1)(x-3)}$$

b) $f(x) = \frac{1}{x^2+8}$
c) $f(x) = \frac{1}{-(x-5)^2}$

5. What are the *x*-intercept(s) and the *y*-intercept of each function?

a)
$$f(x) = \frac{1}{x^2 - 9}$$

b) $f(x) = \frac{1}{x^2 + 7x + 12}$
c) $f(x) = \frac{1}{(x - 2)^2}$

6. Given the graphs of y = f(x), sketch the graph of the reciprocal function $y = \frac{1}{f(x)}$. Describe your method.

7. Each of the following is the graph of a reciprocal function, $y = \frac{1}{f(x)}$.

• Sketch the graph of the original function, y = f(x)

Answer Key:

1. a) $y = \frac{1}{x^2 - 9}$ b) $y = \frac{1}{x^2 - 7x + 10}$ 2. a) $x = -4, x = 4; y = \frac{1}{x^2 - 16}; x \neq b)$ b) $x = 3, x = -4; y = \frac{1}{x^2 + x - 12}; x$ 3. a) $x = 2, -4$ b) $x = 4, 5$	-4, 4, ; x = -4, x = 4 $\neq 3, -4; x = 3, x = -4$ c) no vertical asymptotes
4. a) no x-intercepts, y-int: $-\frac{1}{9}$ c) no x-intercepts, y-int: $\frac{1}{4}$	b) no x-intercepts, y-int: $\frac{1}{12}$
5. a) $D: x \neq -1, 3 \text{ or } (-\infty, -1) \cup (1,3) \cup (3, \infty)$ b) $D: x \in \mathbb{R}, \text{ or } (-\infty, \infty)$ c) $D: x \neq 5, \text{ or } (-\infty, 5) \cup (5, \infty)$	

6.)

7.)

