Lesson 4 Graphing Reciprocals of Quadratic Functions

When we graph the reciprocal of a quadratic function, the quadratic function may have 0,1 , or 2 vertical asymptotes.

There are 3 basic shapes
Shape 1 - Funnel or Inverted Funnel

- This shape has one vertical asymptote

Shape 2 - H-Shape

- This shape has two vertical asymptotes

Shape 3 - The Speed Bump or Pot Hole

- This shape has no vertical asymptote

Examples

Funnel or Inverted Funnel (One Vertical Asymptote)

1. Sketch $y=\frac{1}{(x-1)^{2}}$.

Step 1: Sketch the graph $y=(x-1)^{2}$
Step 2: Sketch vertical asymptotes at the x intercepts. ie. at the restrictions on the denominator.

Note: the horizontal asymptote is the x-axis since reciprocals of positive values will be positive and reciprocals of negative values will be negative.

Step 3: Plot the invariant points. Where $y= \pm 1$

Step 4: Sketch the graph, approaching the asymptotes
2. Sketch $y=\frac{1}{-(x+2)^{2}}$.

H-Shape (Two Vertical Asymptotes)

Steps:

1. Sketch the quadratic function
2. Sketch vertical asymptotes through the x-intercepts
3. Plot the invariant points
4. Plot the reciprocal of the main points.
5. Sketch the graph.
6. Remember to erase the original graph or clearly label
7. Sketch $y=\frac{1}{x^{2}-4}$

8. Sketch $y=\frac{1}{(x-1)(x+1)}$

Speed Bump or Pot Hole (No Vertical Asymptote)

5. Sketch $y=\frac{1}{x^{2}+3}$

Given the graph of each reciprocal function $y=\frac{1}{f(x)}$, sketch $y=f(x)$.
a)

b)

$$
y=\frac{1}{f(x)}
$$

Assignment 4 Reciprocals of Quadratic Functions

1.) Sketch the following reciprocal graphs.
a.) $y=\frac{1}{(x-3)^{2}}$
b.) $y=\frac{1}{-(x+4)^{2}}$
c.) $y=\frac{1}{3(x-1)^{2}}$
d.) $y=\frac{1}{x^{2}-3}$
e.) $y=\frac{1}{-x^{2}+1}$
f.) $y=\frac{1}{-x^{2}+4}$
g.) $y=\frac{1}{x^{2}-2 x-8}$
h.) $y=\frac{1}{x^{2}+2}$

Assignment 5 Reciprocals of Quadratic Functions

1. Given the function $y=f(x)$, write the corresponding reciprocal function.
a) $y=x^{2}-9$
b) $y=x^{2}-7 x+10$
2. For each function;

- State the zeros
- Write the reciprocal function
- State the non-permissible values of the corresponding rational expression
- State the equation(s) of the vertical asymptote(s)
a) $f(x)=x^{2}-16$
b) $g(x)=x^{2}+x-12$

3. State the equation(s) of the vertical asymptote(s) for each function.
a) $f(x)=\frac{1}{(x-2)(x+4)}$
b) $f(x)=\frac{1}{x^{2}-9 x+20}$
c) $f(x)=\frac{1}{-x^{2}-5}$
4. Determine the domain of the following functions:
a) $f(x)=\frac{1}{(x+1)(x-3)}$
b) $f(x)=\frac{1}{x^{2}+8}$
c) $f(x)=\frac{1}{-(x-5)^{2}}$
5. What are the x-intercept(s) and the y-intercept of each function?
a) $f(x)=\frac{1}{x^{2}-9}$
b) $f(x)=\frac{1}{x^{2}+7 x+12}$
c) $f(x)=\frac{1}{(x-2)^{2}}$
6. Given the graphs of $y=f(x)$, sketch the graph of the reciprocal function $y=\frac{1}{f(x)}$. Describe your method.
a)

b)

c)

Pre-Calculus 11 Enriched Absolute Value \& Reciprocal Functions
7. Each of the following is the graph of a reciprocal function, $y=\frac{1}{f(x)}$.

- Sketch the graph of the original function, $y=f(x)$

b)

Answer Key:

1. a) $y=\frac{1}{x^{2}-9}$
b) $y=\frac{1}{x^{2}-7 x+10}$
2. a) $x=-4, x=4 ; y=\frac{1}{x^{2}-16} ; x \neq-4,4, ; x=-4, x=4$
b) $x=3, x=-4 ; y=\frac{1}{x^{2}+x-12} ; x \neq 3,-4 ; x=3, x=-4$
3. a) $x=2,-4$
b) $x=4,5$
c) no vertical asymptotes
4. a) no x-intercepts, y-int: $-\frac{1}{9}$
b) no x-intercepts, y-int: $\frac{1}{12}$
c) no x-intercepts, y-int: $\frac{1}{4}$
5. a) $D: x \neq-1,3$ or $(-\infty,-1) \cup(1,3) \cup(3, \infty)$
b) $D: x \in \mathbb{R}$, or $(-\infty, \infty)$
c) $D: x \neq 5$, or $(-\infty, 5) \cup(5, \infty)$
6.)
a)

b) $\quad,(-2,2) \rightarrow\left(-2, \frac{1}{2}\right)$

c)

7.)
a)

b)

