Pre-Calculus 11 Angles in Standard Position...again

Examples

not on the unit circle

1. The point $\mathrm{P}(-5,12)$ is on the terminal arm of an angle θ in standard position.
a) Determine the distance r from the origin to P .

[^0]c) Determine the measure of θ to the nearest degree.
\[

$$
\begin{aligned}
\theta & =\cos ^{-1}\left(\frac{-5}{13}\right) \\
& =112.62^{\circ}
\end{aligned}
$$
\]

2. $\mathrm{P}(x, y)$ is a point on the terminal side of angle θ in standard position. Determine $\sin \theta, \cos \theta$, and $\tan \theta$ for the following points.
a) $(-3,2)$

$$
x^{2}+y^{2}=r^{2}
$$

$3^{2}+2^{2}=r^{2}$
in $Q \frac{\pi}{\sin \theta>0}$

$$
\sin \theta=\frac{2}{\sqrt{13}} \text { or } \frac{2 \sqrt{13}}{13}
$$

$$
\cos \theta<0
$$

$$
\tan \theta<0
$$

$$
\cos \theta=-\frac{3}{\sqrt{13}} \approx \frac{-3 \sqrt{13}}{13}
$$

$$
13=r^{2}
$$

$$
\pm \sqrt{13}=r
$$

$$
\tan \theta=-\frac{2}{3}
$$

$r>0$

$$
\therefore r=\sqrt{13}
$$

b) $(-3,0)$
on the unit circle
recall: $\begin{aligned} \cos \theta & =x \\ \sin \theta & =y \\ \tan \theta & =\frac{y}{x}\end{aligned}$
$\left.\begin{array}{rr}x & y \\ -1, & 0\end{array}\right)$

$$
\begin{aligned}
\cos \theta & =-1 \\
\sin \theta & =0 \\
\tan \theta & =\frac{0}{-1} \\
& =0
\end{aligned}
$$

3. Determine the exact primary trigonometric ratios for each angle in standard position.
a) 120°
b) 270°

$$
x^{2}+y^{2}=1^{2}
$$

$\sin 120^{\circ}=\frac{\sqrt{3}}{2} \quad\left(-\frac{1}{2}\right)^{2}+y^{2}=1^{2}$
$y^{2}=1-\frac{1}{4}$
$\tan 120^{\circ}=\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}=-\sqrt{3} \quad \begin{aligned} & y^{2}=\frac{3}{4} \\ & y= \pm \frac{\sqrt{3}}{2}\end{aligned}$

$$
\cos 270^{\circ}=0 \quad(x)
$$

$$
\sin 270^{\circ}=-1 \quad(y)
$$

$$
\begin{aligned}
& \sin 270^{\circ}=-1 \\
& \tan 270^{\circ}=\frac{-1}{0}\left(\frac{y}{x}\right) \\
& \text { undefined }
\end{aligned}
$$

undefined
4. Determine possible coordinates of a terminal point for each angle in standard position.
a) 135°
b) 300°

$$
\begin{array}{ll}
\cos 300^{\circ}=\frac{1}{2} & \sin \theta= \pm \frac{\sqrt{3}}{2} \\
\text { (frown } \\
(\operatorname{sal} c) & \sin 300^{\circ}=-\frac{\sqrt{3}}{2}
\end{array}
$$

$$
\tan 30^{\circ}=-\sqrt{3}
$$

Assignment: p 450 , $162.45,7 \mathrm{a}$

$$
\text { pg. } 432 \text { \# 4, } 8 \text { pg } 450 \text { \# 6, } 10 \mathrm{~b}
$$

[^0]: II

 $x^{2}+y^{2}=r^{2}$
 $5^{2}+12^{2}=r^{2}$
 $169=r^{2}$
 $13=r_{\varepsilon_{\text {radius }}}$ is always $+v e$
 b) Determine the primary trigonometric ratios of θ.
 (5,12,13 triplet)
 Use SOH CAH TOA
 $\sin \partial>0$

 $$
 \cos \theta=-\frac{5}{13}
 $$

 $$
 \sin \theta=\frac{12}{13}
 $$

 $$
 \tan \theta=\frac{-12}{5}
 $$

