Pre-Calculus 12 Analyzing Rational Functions

A rational function has the form $y=\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are polynomial functions and $q(x) \neq 0$.

Characteristics of Rational Functions

1. Non-permissible values of \boldsymbol{x}

$>$ Vertical Asymptote: a vertical line that the graph approaches but never touches

$$
y=\frac{1}{(x-3)(x+1)}
$$

- Set the denominator equal to 0 and solve for x
$>$ Hole: a point of discontinuity

$$
y=\frac{x^{2}-25}{x+5}
$$

- Factor (if possible)
- Divide out common factors, set common factor equal to 0 and solve for x-value of hole
- Solve remaining function for corresponding y-value

Ex. 1) Determine any non-permissible values
a) $y=\frac{x^{2}}{x^{2}-9}$
b) $y=\frac{x^{2}-x-2}{x+1}$

Horizontal Asymptotes (H.A.)

For $y=\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ have no common factors, the following happens:
$>$ If the degree of $p(x)<$ degree of $q(x)$ the H.A. is the line $y=0$ $y=\frac{x+2}{x^{2}+6 x-7}$
$>$ If the degree of $p(x)=$ to the degree of $q(x)$ then the H.A. is the line $y=\frac{a}{b}$, where " a " is the leading coefficient of $p(x)$ and " b " is the leading coefficient of $q(x)$

$$
y=\frac{2 x^{2}-1}{3 x^{2}+5}
$$

$>$ If the degree of $p(x)>$ the degree of $q(x)$ then there will be no H.A.

$$
y=\frac{x}{x^{2}+3}
$$

Ex. 2) Determine the equations of any asymptotes and note the coordinates of any holes.
a) $y=\frac{2 x}{x^{2}-4}$
b) $y=\frac{x^{2}+2 x}{x^{2}-4}$

Ex. 3) Solve.

$$
0=\frac{3}{x-2}+4
$$

