Lesson 2 Adding \& Subtracting Radicals

The strategies for adding/subtracting polynomials can be used to add/subtract radicals. Like terms or like radicals in a sum or difference of radicals have the same radicand and the same index.
$\sqrt{2}+2 \sqrt{7}+3 \sqrt{2}=4 \sqrt{2}+2 \sqrt{7}$
*If the radicands are the same, we add the coefficients.

Examples

1. $6 \sqrt{2}-4 \sqrt{2}+\mid \sqrt{2}-3 \sqrt{2}$

$$
0 \sqrt{2}
$$

2. $4 \sqrt{10}-2 \sqrt{5}+3 \sqrt{10}+5 \sqrt{5}$

$$
7 \sqrt{10}+3 \sqrt{5}
$$

3. $\sqrt{18}-\sqrt{2}$

$$
\begin{gathered}
\sqrt{9 \cdot 2}-\sqrt{2} \\
3 \sqrt{2}-\sqrt{2} \\
2 \sqrt{2}
\end{gathered}
$$

Pre-Calculus 11 Radicals
 4. $\sqrt{63}+\sqrt{40}-\sqrt{90}-\sqrt{28}$

Identify the values of the variables for which each radical is defined, then simplify.
5. $6 \sqrt{x}+5 \sqrt{x}-\sqrt{x}$
$x \geq 0$
$10 \sqrt{x}$
6. $\sqrt[3]{27 p^{3} q}+8 \sqrt[3]{p^{3} q}$

$$
p, q \in \mathbb{R}
$$

$$
3 p \sqrt[3]{q}+8 p \sqrt[3]{q}
$$

$11 p \sqrt[3]{q}$

[^0]
[^0]: Assignment: Pg. 115; \#4a,d, 5a,c, 7a,c, 8a,d, MC

