Pre-Calculus 11 Addition and Subtraction of Rational Expressions (Binomial Denominators)

Steps for Adding or Subtracting (Different Denominators):

- Factor all expressions
- Find the LCD
- Write each expression over the LCD.
- Add or Subtract the numerators, keeping the denominators the same
- Simplify and State restrictions (what will make denominator equal to 0)
- Note: the LCD is the product which contains each factor that occurs the greatest number of times in any denominator.

Examples

$$
\begin{aligned}
& \text { 1. } \frac{x}{2 x-4}-\frac{5}{3 x-6} \\
& \frac{x}{2(x-2)}-\frac{5}{3(x-2)} \\
& \begin{array}{l}
\frac{3 x}{6(x-2)}-\frac{10}{6(x-2)} \\
\frac{3 x-10}{6(x-2)} \quad x \neq 2
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. } \frac{x}{6 x+6}+\frac{5}{4 x-12} \\
& \begin{array}{l}
\text { LCD } \\
12(x+1)(x-3)
\end{array} \frac{x}{6(x+1)}+\frac{5}{4(x-3)} \\
& \frac{2 x(x-3)}{12(x+1)(x-3)}+\frac{5(3)(x+1)}{12(x+1)(x-3)} \\
& 2 x^{2}-6 x+15 x+15 \\
& 12(x+1)(x-3) \\
& \frac{2 x^{2}+9 x+15}{12(x+1)(x-3)} \quad x \neq-1,3
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. } \frac{6}{x+3}+\frac{5}{-(3+x)}-\frac{3 x}{x^{2}-9} \\
& \begin{array}{l}
\frac{6}{x+3}+\frac{-5}{x-3}-\frac{3 x}{(x-3)(x+3)} \\
\begin{array}{l}
\frac{6(x-3)}{(x+3)(x-3)}-\sqrt[5(x+3)]{(x+3)(x-3)}-\frac{3 x}{(x-3)(x+3)} \\
\frac{-2 x-33}{(x+3)(x-3)}
\end{array} \quad x \neq \pm 3
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. } \frac{1}{x^{2}-36}-\frac{1}{6 x-x^{2}} \\
& \begin{array}{l}
\frac{1}{(x-6)(x+6)}-\frac{1}{-x(-6+x)} \\
\text { LCD } \\
x(x-6)(x+6) \\
\frac{1}{(x-6)(x+6)}+\frac{1}{x(x-6)} \\
\\
\quad \frac{x}{x(x-6)(x+6)}+\frac{x+6}{x(x-6)(x+6)} \\
\end{array}
\end{aligned}
$$

Assignment: Pg 566; \#3a,b, 5a,b, 6, 7

