
Pre-Calculus 11 Absolute Value of a Real Number

Every real number can be represented as a point on a number line. The sign of the number indicates its position relative to 0. The *magnitude* of the number indicates its distance from 0.

Looking at the number line below, each of the numbers -2, 2 is located 2 units from 0. So, each number has an *absolute value* of 2. We write this as |-2| = 2 and |2| = 2.

Definition:

$$|x| = x \text{ if } x \ge 0, \quad \text{and} \quad -x \text{ if } x < 0$$

|-3| = 3 (when taking the absolute value of a negative number, the number becomes positive)

|4| = 4 (when taking the absolute value of a positive number or 0, the number stays the same)

Ex. 1) Evaluate:

Absolute value can be used to determine distance between two points. Since distance cannot be negative, you can write it as the absolute value of the difference.

ie.
$$|3 - (-4)| = 7$$
 or $|-4 - 3| = 7$

In general the distance between two numbers is given by d = |a - b| or d = |b - a|

Ex. 2) Determine the distance between -3.7 and -8.5.

Ex. 3) Order the following numbers from least to greatest: |-5|, |-7.8|, |3.11|, |-4|, |0|

1. Evaluate each absolute value.

2. Order numbers least to greatest.

Principal Square Root – is the non-negative root of a non-negative real number.

$$25 = 5^2$$
 or $(-5)^2$, so 25 has two square roots: 5 and -5

5 is the principal square root

Consider a square with area x^2 . The side length of the square is positive, so it is the principal square root of x^2 ; that is $\sqrt{x^2}$. Since the principal square root is always positive, $\sqrt{x^2} = |x|$

$$x^2$$
 $\sqrt{x^2}$

When do we use this property?

- When the question starts as a radical, and we are asked to evaluate the radical, we want the principal square root, or the positive root only.
- Think about why the calculator only gives you the positive root.
- If we are solving for x^2 in a quadratic then we know that their can be two solutions.

When solving an absolute value expression, we treat the absolute value like we would a bracket. We evaluate the numbers inside the absolute value first, then apply any other numbers.

REDMAS

.

Evaluate:

a)
$$|100 - 32| - 2|5 - 6|$$
 $|-1| = 1$

b)
$$|5x^2 + 3x - 4|$$
 when $x = -3$
 $|5(-3)^2 + 3(-3) - 4|$
 $|75 - 9 - 4|$
 $|3a|$

Assignment: Pg. 89; #3, 4, 5a, 6a, 7, 8a, 10, 11b 12a, c, e, 14a, d